Navigation Satellite Fault Detection and Failure Cause Identification Methods Using Inter-satellite Links and Trigonometry Law

Konkuk University, Seoul, South Korea
Department of Aerospace Engineering
GUNACO

JinHyeok Jang, SangHoon Koo, SangKyung Sung, Young Jae Lee
JungMin Joo, MoonBeom Heo
2017. 11. 16.
Introduction

- GNSS Fault Cause

Satellite Fault

- GNSS Fault Cause
 - Propagation
 - Jamming/Spoofing

- Fault Case

<table>
<thead>
<tr>
<th>Fault Cause</th>
<th>Phenomenon</th>
<th>PRN</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital and Analogue Circuit error</td>
<td>Flat, distorted multiple peak in correlator</td>
<td>19</td>
<td>1993. 10</td>
</tr>
<tr>
<td>Clock Anomaly</td>
<td>Discontinuity of satellite broadcast signal</td>
<td>27</td>
<td>1998. 3</td>
</tr>
<tr>
<td>Erratic Clock</td>
<td>Discontinuity of satellite broadcast signal</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Mis-modeling by master control station</td>
<td>Satellite ephemeris error SA-like</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Vehicle instability</td>
<td>Satellite ephemeris error SA-like</td>
<td>16</td>
<td>2004. 1</td>
</tr>
<tr>
<td>Clock Anomaly</td>
<td>Instability in carrier frequency range and range rate error</td>
<td>23</td>
<td>2009</td>
</tr>
<tr>
<td>Hardware Interference</td>
<td>Demonstrating larger than expect pseudorange errors that appear to be elevation-dependent</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

- GPS Satellite Ephemeris Threat Class

 Ephemeris Threat

 - Type-A
 - Satellite Orbit Modified
 - Type-A1
 - Satellite Orbits to Complete the Modification. But Not Reflected in Ephemeris
 - Type-A2
 - Modifying satellite orbit
 - Type-A2a
 - Satellite Available Flag “Health”
 - Type-A2b
 - Unscheduled Maneuver
 - Type-B
 - Satellite Orbit Not Modified
 - Upload Incorrect Ephemeris
Introduction

- **Conventional Satellite Fault Detection Methods**
 - Measure-based techniques obtained from ground-based stations in GBAS and SBAS
 → As the **error factors** included in the ground measurements, the estimation process is required and the failure detection performance degradation

- **Propose Method**
 - Methods using **Inter-satellite link (ISL)** measurement
 → Ground measurement error factors remove
 - Satellite fault monitoring using **trigonometric law** in triangular condition
 → Improved detection performance
 - **Difference of measured value** according to cause of failure
 → The failure cause identification method

\[c = a \cos B + b \cos A \]
Concept of fault monitoring algorithm using trigonometric law

[Normal-state]

\[\rho : ISL \ (Inter \ Satellite \ Link) \]
\[\hat{\rho} : Estimated \ Range \ (Trigonometric\ Law \ Use) \]
\[\bar{e} : \ \text{Line-Of-Sight} \ \text{Vector} \ \ (Ephemeris\ Use) \]
\[\theta : \ \text{Induced} \ \text{Angle} \ \ (Ephemeris\ Use) \]

[Fault-state]

\[\rho^A \approx \hat{\rho}^A \]

[Test Statistic]

\[TS^C = \rho_{AB} - \hat{\rho}_{AB} \]

[Trigonometry Law]

The Law of Cosines #1:
\[\hat{\rho}^{AB} = \rho^{AC} \cos \theta_A + \rho^{BC} \cos \theta_B \]

The Law of Cosines #2:
\[(\hat{\rho}^{AB})^2 = (\rho^{AC})^2 + (\rho^{BC})^2 - 2\rho^{AC}\rho^{BC}\cos \theta_C \]

[Assumption]

1 Satellite Fault
Comparison of ground measurement method and proposed method

- **Situation according to triangle component**

<table>
<thead>
<tr>
<th>2 Reference Station</th>
<th>Normal-state</th>
<th>2 Normal-state Satellite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Distance</td>
<td>Measure distance between normal-states</td>
<td>ISL</td>
</tr>
<tr>
<td>Pseudorange</td>
<td>Measure distance between satellite and normal-states</td>
<td>ISL</td>
</tr>
<tr>
<td>3D</td>
<td>Local coordinate</td>
<td>2D</td>
</tr>
<tr>
<td>O</td>
<td>Presence or absence of elevation angle</td>
<td>X</td>
</tr>
<tr>
<td>O</td>
<td>Presence or absence of requirement reference station</td>
<td>X (Satellite Self-monitoring)</td>
</tr>
<tr>
<td>Pseudorange</td>
<td>Error-containing Parts</td>
<td>Broadcast Ephemeris of Normal-state Satellite</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

- **Sensitivity**
 - Factors that determine the **detectable fault size**
 - Used as **performance indicator** of fault detection algorithm

\[
\delta \tilde{e} = \frac{(I - \tilde{e}^T \cdot \tilde{e}) \delta \tilde{R}}{\rho}
\]

\[
\tilde{e}_f^{AC} = \tilde{e}^{AC} + \delta \tilde{e}^{AC} \\
\tilde{e}_f^{BC} = \tilde{e}^{BC} + \delta \tilde{e}^{BC}
\]

\[
TS^C = |\rho_{AB} - \hat{\rho}_{AB}|
\]

\[
= \delta \tilde{R}^T \cdot \left[\left(\tilde{e}^{AC} \right)^T \cdot \left(\tilde{e}^{AC} \right) - \left(\tilde{e}^{AB} \right)^T \cdot \tilde{e}^{AB} \right]^T \cdot \tilde{e}^{AB}
\]

\[
\tilde{e}^{AB} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T
\]

\[
TS^C = \left[E^C \right]_L \delta \tilde{R}^T
\]

\[
\left[E^C \right]_L = \left[E^C \right]^T \cdot \tilde{e}^{AB}
\]
Sensitivity Analysis

Sensitivity
- Derive sensitivity according to local coordinate system setting

2 Reference Station + 1 Fault-state Satellite

\[
\varepsilon^{AC} = \cos \theta \cos \psi_A \hat{i}_1 + \cos \theta \sin \psi_B \hat{i}_2 + \sin \theta \hat{i}_3
\]

\[
\varepsilon^{BC} = \cos \theta \cos \psi_B \hat{i}_1 + \cos \theta \sin \psi_B \hat{i}_2 + \sin \theta \hat{i}_3
\]

\[
\left[E^C \right]^T_L = \left[E^C \right]^T \cdot \varepsilon^{AB}
\]

\[
= \begin{bmatrix}
\cos^2 \theta (\cos^2 \psi_A - \cos^2 \psi_B) \\
\cos^2 \theta (\cos \psi_A \sin \psi_A - \cos \psi_B \sin \psi_B) \\
\cos \theta \sin \theta (\cos \psi_A - \cos \psi_B)
\end{bmatrix}^T
\]

2 Normal-state Satellite + 1 Fault-state Satellite

\[
\varepsilon^{AC} = \cos \psi_A \hat{i}_1 + \sin \psi_A \hat{i}_2
\]

\[
\varepsilon^{BC} = \cos \psi_B \hat{i}_1 + \sin \psi_B \hat{i}_2
\]

\[
\left[E^C \right]^T_L = \left[E^C \right]^T \cdot \varepsilon^{AB}
\]

\[
= \begin{bmatrix}
\cos^2 \psi_A - \cos^2 \psi_B \\
\cos \psi_A \sin \psi_A - \cos \psi_B \sin \psi_B
\end{bmatrix}^T
\]

Elevation Angle X

\[
\downarrow \text{Simplification of formulas}
\]
Sensitivity Analysis

- Sensitivity comparison through simulation
 - Algorithm performance prediction based on triangle component change

GBAS phase based satellite fault detection method

- No triangle configuration
- Relatively low sensitivity

2 Reference Station + 1 Fault-state Satellite

- Distance limit is generated by using reference station
- Geometric restriction of the angle of induced

2 Normal-state Satellite + 1 Fault-state Satellite

- Geometric constraints X
- No condition of included angle

Sensitivity increase
↓
Reduced detectable fault size
Fault Simulation

- Normal-state test statistic analysis
 - Procedure for calculation of threshold

Analysis Data

<table>
<thead>
<tr>
<th>Date</th>
<th>2011. 2. 13 ~ 2.19 (1 Week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Calculated using IGS (ISL is not measurable)</td>
</tr>
<tr>
<td>Ephemeris</td>
<td>Suwon International GNSS Service (IGS) in South Korea</td>
</tr>
<tr>
<td>Period</td>
<td>15 minute</td>
</tr>
</tbody>
</table>

Analysis of all triangular configurations of visible satellites

- Normal-state test statistic
- The trend of standard normal distribution
- Threshold
- Normal-state Data 3σ
Fault Simulation

- **Comparison of Detectable Fault Size According to Triangle Configuration**
 - Both configurations result in the implementation of this algorithm
 - All fault detection possible
 - Possible difference in detectable fault size

Insertion satellite Orbital failure size:
- 1 km
- 5 m
Satellite Failure Cause Identification Method

- **ISL measurement trends due to satellite failure**
 - Assumption: ISL measurements are synchronized with satellite time
 - There is a difference in ISL measurement failure due to the cause of failure and the geometry of the satellite
 - Orbit fault: Fault effect difference for each ISL measurement according to orbital failure direction
 - Clock fault: Same size fault for both ISL measurements connected to faulty satellites
Satellite Failure Cause Identification Method

- **Confirmation test statistic trend through failure simulation**
 - Failure simulation for checking the predicted test statistic tendency according to the cause of failure
 - Comparison of test statistic after orbital / clock fault insertion
 - Orbit fault: Change in test statistic is positive / negative
 - Clock fault: Change in test statistic occurs in positive or negative direction

Satellite Orbit Fault

Satellite Clock Fault

- Difference in direction of test statistic according to triangle
- All triangles have the same directional difference in the test statistic
Operational Concept of Methods

- Operational Concept of the Satellite Fault Detection and Satellite Failure Cause Identification Methods
 - If ISL measurements can be received on the ground, the methods can be employed on the ground. Otherwise, satellite on-board processing is necessary.
 - First, the satellite fault detection algorithm is run continuously.
 - Once a fault is detected, the satellite involved is declared out of service.
 - All satellites near the fault-state satellite are then configured to provide their ISL measurements. And perform fault identification.

\[TS^C = |\rho_{AB} - \hat{\rho}_{AB}| \]
Conclusion

- Explain satellite fault detection method using ISL measurement, instead of ground measurements, coupled with a trigonometry law
- Sensitivity comparison analysis was performed
- Setting the threshold and performing fault simulation
- Explain satellite failure cause identification method using ISL and trigonometry law
- Cause-dependent tendency of measurements was predicted, simulation was performed to verify the predicted changes in the test statistic
- Finally, an overview of the operational concept of the satellite fault detection and satellite failure cause identification