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ABSTRACT

The advantages of a navigation system that can mon-
itor its own integrity are obvious. All GNSS integrity
monitoring methods may be broadly divided into two
classes: “active integrity methods” and “passive intggrit
methods”. The active integrity methods, like ARAIM, are
very efficient in the case of unbounded GNSS channel
degradations.

However, nowadays even bounded degradations of the
pseudo-range measurements lead to an unacceptable ad-
ditional bias of the users fix, due to reduced alarm
limits. In such a case, the solution consists in the passive
integrity method, which is called “overbounding”. The
overbounding approach allows all pseudo-range measure-
ments without rejection. The idea of the approach is to
define conservative bounds (overbounds) for the cumula-
tive distribution function (CDF) of pseudo-range errors in
order to get a conservative bound for the integrity risk.

The known methods of overbounding are applicable to
the calculation of conservative bounds for the distributio
of a linear combination of several random variables.
Hence, these methods can be used to calculate the in-
stantaneous integrity risk overbounding for the vertical
positioning but they cannot be used to calculate the in-
stantaneous integrity risk overbounding for the horizbnta
positioning. This is because the horizontal positioning
error is a nonlinear combination of several pseudo-range
errors.

Moreover, the MOPS for GPS/Galileo requires calcu-
lating the integrity risk “per a given period of time” (e.g.,
“per approach” or “per hour”). Because the pseudo-range

errors are strongly auto-correlated, the passage from the
instantaneous integrity risk overbounding to the intggrit
risk overbounding per a given period of time is not trivial.

The original contribution of this paper is twofold. First,
we propose two new conservative bounds for the integrity
risk in the horizontal plane by using one or two Gaussian
PDFs with an inflation coefficient. Second, we calculate
the impact of the pseudo-range errors autocorrelation
on the conservative bounds for the vertical/horizontal
integrity risks.

1. INTRODUCTION AND MOTIVATION

The GNSS integrity monitoring methods can be broadly
divided into two classes: “active integrity methods” and
“passive integrity methods”. For example, the Advanced
Receiver Autonomous Integrity Monitoring (ARAIM)
with Fault Detection/Exclusion (FDE) functions belongs
to the class of active integrity methods. If an unbounded
additional pseudo-range bias in one (or two) GNSS chan-
nel(s) occurs at an unknown time then the outputs of the
Least Squares (LS) algorithm are not an optimal solution.
Such unbounded pseudo-range bias leads to an unbounded
additional bias of the user’s fix, which is clearly very
undesirable. In this case, the only solution to preserve
a high constant integrity level of GNSS positioning is to
use the active integrity methods, like ARAIM.

However, nowadays another type of problem arises due
to reduced horizontal/vertical alarm limits: some bounded
degradations (additional biases and/or CDF shape defor-
mation) of (maybe several simultaneous) pseudo-range
measurement(s) lead to an unacceptable additional bias
of the user’s fix. Unfortunately, the probabilities of false
alarm, missed detection and false isolation of ARAIM
FDE algorithms (even in the case of optimal statistical
tests) for such bounded degradations do not satisfy the
advanced MOPS for GPS/Galileo for some safety-critical
mode of flight.

In that case, a reasonable solution to the problem
of integrity monitoring consists in the passive integrity
method, based on pseudo-ranges “overbounding”. The
overbounding approach allows all pseudo-range measure-
ments without rejection. The concept of overbounding
suggests to define conservative bounds (overbounds) for
the cumulative distribution function (CDF) or probability
density function (PDF) of pseudo-range errors and to get
a conservative bound for the integrity risk by using such
overbounds for the pseudo-range errors.
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The rest of the paper is organized as follow. The
pseudo-range measurement equations for single/double
frequencies are introduced in Section 2. The navigation
solution and the expression of the horizontal and vertical
positioning errors as functions of the pseudo-range errors
are given in Section 3. Next, the problem of overbound-
ing is stated and the original contribution is defined in
Section 4. A short critical analysis of the overbounding
methods available in the literature is given in Section 5.
The overbounding for horizontal/vertical instantaneous
integrity risk is calculated in Section 6. The overbounding
for horizontal/vertical “per-given-period-of-time” iagrity
risk is calculated in Section 7. Here, we study the impact
of the pseudo-range errors autocorrelation on the “per-
given-period-of-time” integrity risk. Three numerical-ex
amples of overbounding are given in Section 8. Finally,
some conclusions are drawn in Section 9.

2. MEASUREMENT EQUATIONS

The navigation solution is based upon accurate measur-
ing the distancerange from several satellites with known
locations to a user (vehicle). Let us assume that there are
m satellites located in three-space (ECEF coordinates) at
the known positionsX; = (z;,9;,2)7,i = 1,...,m,
and a user atX,, = (x,y,2)’. The pseudo-ranges;

(¢ = 1,...,m) from the navigation satellites to the user
can be written as

Ti:di(x;yvz)+6tr+€iv (1)

where d;(z,y,z) = ||X; — Xu|2 is the true distance
from thei-th satellite to the uset,. is a user clock bias,
c ~ 2.9979 - 108m/s is the speed of light ang; is an
additive error of the pseudo-range Let us define the
vectoré = (&1,...,&,)T of additive pseudo-range errors
at the user's position, the vectd8 = (b1,...,bm)7,
b; = E(&;), of nominal pseudo-range biases (unknown but
bounded mean error) and the diagonal variance-covariance
matrix ¥ = diag {o?,...,02 }, where the variances
o? = Var(¢), i = 1,...,m, are defined as functions
of several parameters, for instance, elevation angles.

Let us suppose that the distances from the satellites to
the user (see equation (1)) are measured by using two
frequenciesf; and f> (for example L1 and EJ :

r,i = di(z,y,2)+ct, +&,; frequency fi
r2,i = di(z,y,2)+ct.+ &, frequency f2 (2)

The dual-frequency (corrected) pseudo-range, ; is a
linear combination of the pseudo-ranges; and rs ;
measured with the frequencigs and f; [1] :

_ v oot _
12,4 7_171,1 7—1T2’Z
= di(z,y,2) +ctr + &2,
where 12 = [v/(v — Dl&.: — [1/(y = Di&2.4,

v = (f1/f2)* > 1. By analogy with the mono-frequency
signal, let us define the vect@i_» of dual-frequency
pseudo-range errors, the vectBi_, of nominal biases
and the diagonal variance-covariance makix_s.

3. NAVIGATION SOLUTION

Let us first linearize the measurement equations (1)
and (2) around a working poinX,, o = (o, y0,20). In
fact, the mathematical background is essentially the same
and the only difference is the vector of nominal bounded
biases and the matrix of variances of pseudo-range errors.
Let us consider; as a function ofz, y, z andt,. :

(Xu;tr> =T :di(xvyaz>+0tr+€i (3)

and let us introduce the following vectorsR =
(7'1, e ,T',,,L)T, D= (dl, Ce ,d7,L)T andX = (XZ, C(‘,,,A)T_

For the sake of simplicity, we consider in the rest of
the paper that the ECEF coordinates is transformed to the
local East, North, Up (ENU) coordinates. By linearizing
the pseudo-range equation with respect to the vegipr
around the working poinfX, o = (zo,%0,20)7, we get
the measurement equation

Y =R—-Dy~H(X — Xg) +&, (4)
whereY = (y1,...,ym)", Do = (dio,...,dmo)",
dio = ||Xi — Xuoll2, Xo = (XI,00" and H =

5% |x_x, is a Jacobian matrix of sizén x 4). In the

case of dual-frequency measuremeritsis replaced by
Ri_o = (7“1_27 1y-- and§ by 19 in (4)

The LS method :

-5 T1—2, 'rn)T

X=Xo+A(R—Dy), A=(HTS'H)"'"H"S~". (5)

is the best linear unbiased estimator)ofunder assump-
tion thatm > 5, B =E({) = 0 andcov(§) = X (in the
dual-frequency case, = ¥;_5) is known, see details in
[2], [3]. Moreover, it follows from the theorem of Rao-
Cramer [2] that the LS method reaches the Cramér-Rao
lower bound in the class of unbiased estimatorXof if

&~ N(0,%) then

Covy ()}) > covyx ()?) = (HTZ*IH)_l, (6)

whereX is any unbiased estimator of and X is the LS
estimator and simultaneously a lower bound in the class
of unbiased estimators.

To calculate a conservative bound for the integrity
risk, it is necessary to express the horizontal and vertical
positioning errors as functions of the pseudo-range errors
15+, &m. As it follows from (5), the vector of posi-
tioning errorsX — X (in ENU coordinates) is a linear
combination of the pseudo-range errgss. .., &,

X — X = A¢. ()

4. PROBLEM STATEMENT AND ORIGINAL CON-
TRIBUTION

If the distribution of the pseudo-range errofsis
GaussianN (B, Y), where B = E(§) = 0 and the
variance-covariance matréov(§) = ¥ is known, the esti-
mation X realizes the smallest possible ellipsoid of errors
X — X. But the LS estimation given by (5) is optimal
only theoretically, under the above-mentioned conditions
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We are interested what happens Bf = E(¢) # 0,

the variance-covariance matrix is only partially known
and, moreover, the distributiafi (z) of the pseudo-range
errors £ (or &—2) is unknown but only conservative
bounds (overbounds) for the CDF¢(z) and/or PDF
fe(z) = dF¢(z)/dx of pseudo-range errors are available.
The question is how to get conservative bounds for the
integrity risk in such situation.

4.1 Instantaneous integrity risk overbounding

The instantaneous (per GNSS epoch) integrity risk for
the horizontal and vertical positioning is defined by the
following probabilities

P(||Qnll2 = HAL) , (8)
where Q, = (7 — z,7 — y)T and HAL means the
Horizontal Alarm Level, and

P(|Q.] > VAL), 9

where @, = zZ — z and VAL means the Vertical Alarm
Level.

Hence, the first goal of this paper is to calculate
conservative upper bounds for the horizontal and verti-
cal positioning integrity risk, defined in (8) and (9), as
functions of the overbounds for the CDFt(x) and/or
PDF fe(z).

4.2 “Per a given period of time” integrity risk over-
bounding

Nevertheless, in reality, the MOPS for GPS/Galileo
require calculating the integrity risk per a given period
of time (e.g., “per approach” or “per hour”). Because
the pseudo-range errors are strongly auto-correlated, the
passage from the instantaneous risk to the risk per a given
period of time and its overbounding are not trivial. Let us
define two random sequences of positioning errors :

{Qh,n}nZl and {Q"’vn}nZI’ (10)

where Qh,n = (/x\n - mn;@\n - yn)T, Q'U,n = /Z\n — Zn,
n=1,2,3,...is the current number of time step (GNSS
epoch) and the following stopping time§ :
Ny, = inf{n>1:|Qnul2>HAL}, (11)
N, = inf{n>1:]|Qun| >VAL}. 12)

Therefore, the horizontal and vertical integrity risk per
a given period of timeT" is defined as the following
conditional probabilities

P (Np <T|||Qn,oll2 < HAL) (13)

and
P (N, <T||Quvol < VAL). (14)

provided that the starting poiti2; o (resp.Q, o) satisfies
the condition|| @y, ol|2 < HAL (resp.|Qu.,0| < VAL).

The second goal of this paper is to calculate conser-
vative upper bounds for the horizontal and vertical posi-
tioning integrity risk per a given period of time defined

in (13) and (14) as functions of the pseudo-range auto-
correlations, the overbounds for the COF(x) and/or

PDF fe(z).
4.3 The original contribution of this paper

First, we propose two new methods of overbounding
in the horizontal plane. It is assumed that the degradation
of the pseudo-range error with the PDf,(z) leads
to two different phenomenai) the deformation of the
PDF f¢,(z) shape;ii) the emergence of an additional
(unknown but bounded) bids in the pseudo-range errors
&;. To cover this degradation, it is proposed to use one or
two Gaussian PDFs with an inflation coefficient. These
conservative Gaussian bounds for pseudo-range errors
&,..., &, are transformed into the conservative bound
for the instantaneous integrity risk (8) in the horizontal
plane. Simple analytical and numerical expressions are
proposed for such a conservative bound.

Second original contribution consists in establishing
the impact of the pseudo-range errors autocorrelation on
the conservative bound for the vertical/horizontal iniigr
risks per a given period of tim&. The proposed solution
is reduced to the first-passage-problem for the autore-
gressive first order model AR(1). In the case of hori-
zontal positioning, our goal is to calculate a conservative
bound for the probability? (N, < T ||Qn0ll2 < HAL)
that the vector AR(1) process reaches the circular absorb-
ing boundary of radius HAL during a given pericd
(expressed as the number of time units, i.e., GNSS epochs
that have elapsed since a specified epoch). In the case of
vertical positioning, our goal is to calculate a consexati
bound for the probability? (N, < T'||Q.,0| < VAL) that
the scalar AR(1) process reaches the absorbing boundary
+VAL during a given period of timel".

The proposed contributions represent a mathematical
background to formalize the vertical and horizontal in-
tegrity risk overbounding in exact terms following the
requirements of the MOPS for GPS/Galileo.

5. KNOWN METHODS OF OVERBOUNDING

The goal of this section is to recall the known methods
of overbounding. The section is concluded by formulating
some open problems.

Three main methods of overbounding for scalar random
variables are available in the literature :

o the method of “Single CDF overbounding” (see
DeCleene [4]) applicable to symmetric and unimodal
distributions;

« the method of “Paired CDF Overbounding” (see Rife,
Pullen, Enge, and Pervan [5], [6], [7];

« the method of “Excess-Mass CDF overbounding”
(see Rife, Walter and Blanch [8], [9], [10].

5.1 Single CDF overbounding

Definition 1: The single CDF overbounding is defined
as follows [4]:

Foe(x) > Fe(x) Vo <0 et F,¢(x) < Fe(x) Vo >0,
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Non-usable part
AL

Fig. 1. Single CDF overbounding.

whereFg (x) is the CDF of the random variable F, ¢ (x)

is the bound for the CDF(x).

This type of overbounding is shown in Figure 1.
Proposition 1 (DeCleene [4])Let us consider two inde-

pendent random variablgsand . Their CDF functions

are denoted ag(x) and F,(x) and their functions of

overbounding are denoted d$ ¢(z) and F, ,(z) (see

Definition 1). It is considered that the distributions are

zero-mean, unimodal and symmetric. Then

Fogyn(x) > Feyn(x) Ve <0

and
Fogtn(x) < Feqq(z) Vo >0

whereF, ¢, (z) = (Fo e % F, ) (z) and Fepp,(x) = (Fe*
F,))(x) are the convolutions of the CDF.

5.2 Paired CDF Overbounding

Fig. 2. Paired CDF overbounding.

Definition 2: The paired CDF overbounding is defined
as follows (see [5], [6]) :

Fe(z) < Fe(or) < Fe(z) Vo eR

This overbounding is shown in Figure 2.

Theorem 1 (J. Rife, S. Pullen, P. Enge et B. Pervan [5],
[6]): Let us consider two independent random variables
¢ and n with the CDF F¢(z) and F,,(z) and the func-
tions of overbounding®, (z), F¢(z) and F, (z), F(x),
respectively. Then

Fepy(@) € Fepy(z) < Fepyla) Vo €R

wheref,, (z) = (Eg+F,)(x), Fein(z) = (FexFy)(2)
and Fe i (x) = (Fg * Fyy)(2).

Non-usable part

Fig. 3. Excess-Mass CDF overbounding.

5.3 Excess-Mass CDF overbounding

The “Excess-Mass CDF overbounding” can be inter-
preted as the extension of the paired CDF overbounding,
where the natural constraint®):< F(z) < Fe(r) <1
are not respected and the bounds— F(z) etz —
F¢(z) can be negative or positive but greater than
This situation is illustrated in Figure 3. The idea of this
approach is to get a more flexible bounds— F(z)
andz — F¢(z). If the bounds are based on the Gaussian
distribution [8], [9], [10], the overbounding equationgar

Fe(r; K,0,7) =K/w f(u;0,v0)du+ (1 — K) (15)
and
E(ﬂc;K,Hﬁ):K/z f(u;—0,~v0)du, (16)

wheref (z; 0, 0) is the PDF of the Gaussian laW/ (6, o2).

The convolutions defined in Theorem 1 are also appli-
cable to the bounds defined by the “Excess-Mass CDF
overbounding”.

5.4 Critical analysis and open problems

« The weak point of the single CDF overbounding
is the necessity of very strong assumptions : the
distributions of the pseudo-range errors should be
zero-mean, unimodal and symmetric. It seems that
so strong assumptions are not compatible with the
biasesb; in the pseudo-range error§ and the
deformation of the PDF¢, (x) shape.

« The strong point of the paired CDF overbounding is
that the distributions can be arbitrary (even those that
are not zero-mean, unimodal and symmetric). This
method seems to be more realistic, because the biases
b; in the pseudo-range errofs and the deformation
of the PDF f¢, (x) shape are compatible with the
paired CDF overbounding.

o The excess-mass CDF overbounding is a potentially
interesting approach but it can produce very conser-
vative bounds for the CDF.

The paired CDF overbounding (Paired Overbound The-

orem 1) is well-adapted to the situation where the es-
timation is a linear combination of several independent
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pseudo-range errorg, . .., &,,. As it follows from (7),
the LS estimation error on the vertical axis is calculated
as a weighted sum of the pseudo-range random errors
& ~ Fe,, whereFy, denotes the CDF of the pseudo-range
& - .
Qv=2—2z= Z as,i&i (7)
=1
wherea; ; is the (j,4)-th entry of the matrix4. Hence,
Theorem 1 can be easily applied to the vertical risk
overbounding.
On the contrary, in the horizontal risk overbounding,
the radial errorr is a nonlinear function of several
independent pseudo-range errgrs. . ., &,.

r=Qulz=VE -2 +@F-y?  (18)

whereQy, = (Z — z,7 — y)T with

T—x= Z a1 &, Y—y= Z az,qi&i (19)
i=1 i=1

and a;; is the (j,7)-th entry of the matrixA. Hence,
Theorem 1 is not applicable to the horizontal risk over-
bounding.

All three above-mentioned methods of overbounding
are applicable only for the calculation of the conservative
bounds for the instantaneous vertical risk.

Finally, it can be concluded that there are no methods
available in the literature

o for calculation of the conservative bounds for the
instantaneous horizontal risk;

o for calculation of the conservative bounds for the
vertical/horizontal integrity risks per a given period
of time 7.

6. CONSERVATIVE BOUNDS FOR THE INSTAN-
TANEOUS INTEGRITY RISKS

The main goal of this section is to find conservative
bounds for the horizontal instantaneous integrity risksTh
problem is divided in two stepsi} bounding the impact
of the pseudo-range biases on the conservative bounds for
Gaussian distributiond) bounding the impact of the PDF
fe,(z) shape deformation on the conservative bounds for
an arbitrary distribution. Finally, the conservative bdun
for the vertical instantaneous integrity risk will be brjefl
discussed by using Theorem 1.

6.1 Conservative bounds for the horizontal instanta-
neous integrity risk (Gaussian distribution)

As it follows from Section 4, a more realistic working
hypothesis includes an additional bounded bigsin
the pseudo-range measurement (1), (2). Let us consider
that the errorg; are distributed following the Gaussian
distribution¢; ~ N (b;, 0?) and that the absolute value of
the biasb; of the pseudo-range measurements upper
bounded byb;. Hence

—b; <b; <b;, i=1,...,m.

This last condition can be interpreted as the “Paired CDF
overbounding” in the case where the class of possible
distributions of the pseudo-range errgrss restricted to a
family of Gaussian distributions with bounded means. The
functions of overbounding are given by (see Definition 2)

= A A

F,L-7£(l') :N(Z_)Z,O'Q) and F%g(l‘) :N(*Ei,OQ).

Let us recall some useful results on the probability
calculation for Gaussian quadratic forms. Suppose that
X ~ N(0,%), & € M« is the variance-covariance
matrix of X andé € R’ is the vector of means oX. Our
goal is to calculate the probability of the evedt||> > h
by using the functiorFy(y, A, w)

P(|X|2>h)=1-F, (h* A w). (20)
This function
) 1
Fily. Aw) = (2m)~ exp {3 IWIE | aw
D={(W—w)TA(W—w)<y}

whereWW € R? denotes the support of the random vector
UT¢ ~ N(0,I;) andw = —A~2UTH, is well-known

in the statistical literature. A numerical method of its
calculation is given in [11].

60

ol A R

Ellipse of errors

20

True position

y—y (m)

—20F

—40F

o —40 20 0 20 10 60
Z—x (m)

Fig. 4. The vector of systematic errof;, and the orientation of the
error ellipse. The major radius and minor radius are denbyeq \max
and v/ Amin, respectively.

Let us assume thak = @, 0 = By, ¢ = 2 and
h = HAL. The analysis of the functiof:(y, A,w) shows
that there are two factors determining the probability (20)

« the vector of systematic horizontal errabs, € R?;
« the orientationy of the ellipse with respect to the
vector By,.

This situation is illustrated by Figure 4.
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Disk of radiusy/\yax

-1
1
1
1

4 B ]}fvertex B,

05f 1 coordinates

05} . : Convex polygonP

Fig. 5. The convex polygoi® obtained by a linear mapping (defined
by the matrixA;) of the setB onto the sefP.

By using (7), the vector of systematic errals, can
be expressed as a linear function of the vector of pseudo-
range biase$3 :

B =A,B, A, = ( drir 0 G1m )

@21 -+ A2m

Let us define the following hyperrectangl® =
{X eR™|z; € [-b;,b], i=1,...,m} and a linear
mapping (defined by the matri¥d;) of the setB onto
the setP. The setlP is a convex polygon. This convex
polygon is shown in Figure 5 for a toy example of four
visible satellites, i.eqn =4 andb; =1,i=1,...,4.
Because the vector of pseudo-range biaBess un-
known but bounded, i.e.B € B, the problem of
overbounding in the horizontal plane is reduced to the
maximization of the probability to lose integrity (i.e.,
instantaneous risk of integrity). In such a way, we get a
conservative (worst-case) estimation of the instantasmeou
risk of integrity. The maximization of this probability is
equivalent to the minimization of the functiafy(. . .) :

P >HAL) =1 —
mnax (1Qnll2 = )

Join P (HALQ, A, —A*%UTAhB) . (21)
where the horizontal error®;, = (7 — 2,57 — y)T (in
ENU coordinates) are defined in (19), the matrideand

U are calculated by using the variance-covariance matrix
¥ =cov (Qn) = UAUT.

The calculation of the probability
Pg, ., (| X]l2 > HAL), defined by (20), for different
valuesB;, and for different orientations of the ellipse,
represents a heavy computational burden (especially for
on-board computer). To reduce computational burden, the
error ellipse can be overestimated by a disk of the radius
VAmax, Where Ay = max{\1, A2} and A1, A\, are

eigenvalues of the matriX. In this case, the probability
to lose integrity is overbounded in the following manner

Pp,.» (| X]2 > HAL) <1—F (HAL? A w), (22)

where A = diag {Amax; Amax} and w = —K_%Bh.
This overbounding simplifies the problem of minimization
(21). By putting together (21) and (22), we get

> <1-—
BUEI%@P(HQME > HAL) <1

min F, (HALQ,K, —K*%A,lB) . (@3)
BeB

where A = diag {\max, Amax}. In this last case, the
function F5(...) depends on the normiA,B|, and
this function||A,B|, — F»(...,||ArB]|,) is monotone
decreasing for any given HAL antl. Therefore, the upper
bound for the horizontal integrity risk (defined in the right
hand side of (23)) is a monotone increasing function of
the Euclidean nornjA; B||,. Finally, the problem of con-
servative estimation of the horizontal integrity risk (21)
(23) is reduced to the maximisation of the Euclidean norm
over the convex polygol®. The maximum is reached in a
vertex of the convex polygoR. Hence, the overbounding
for the instantaneous risk of integrity is given by

max P(|Qull>>HAL) <1-F; (HAL? T, fK‘%Eh) ,
BeB,p

(24)
where B, = ApB;, j = argiirlnaxzm{HAhBiHQ}, and
B, is a vertex of the hyperrectangle i = 1,...,2™.

As it follows from (24), the maximization of the
Euclidean normj| A, B||, over the set oR™ vertices of
the hyperrectanglB can be simplified by using the vector
B; defined as follows

* |aq 1|51 + 0+ o n|Bm
Bf = 2 R . 25
h ( lazalbr + -+ azn|bm (25)

instead ofB},. Hence, the following (more conservative)
overbounding for the horizontal integrity risk is given by

— 1
max P(|Qnl2 > HAL)<1—F, (HALQ,A, Sy 2Bh)
BeB,p

<1-F (HALQ,K, —K*%B;). (26)

6.2 Conservative bounds for the horizontal instanta-
neous integrity risk (arbitrary distribution)

1) Excess-mass overbounding by using two Gaussian
PDFs: Let us consider that the true PDf ¢(z) of the
pseudo-range errogs can be upper bounded by using two
PDFsf,, (x) and f_p, (z) of two Gaussian laws/ (b;, 0?)
and N (=b;,0?) :

fie(x)<cilfo,(x)+fop, ()] forz € Randi=1,...,m,

where ¢; is the inflation coefficient and; > 0. This
method of overbounding, illustrated in Figure 6, can be
interpreted as the method of “Excess-Mass PDF over-
bounding” proposed in [8].
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Fig. 6. Overbounding of the pseudo-range elffprPDF by using two
Gaussian PDFs.

To estimate the horizontal integrity risk, it is necessary
to calculate the following multiple integral :

m

IP(HQh”? > HAL / /Hft mt dml “drm,

zTAx >HAL2

/ /ﬁc [foo (i) + fb, ()] day - - dwm,

CETAI>HAL2

with A = azal + ayag, az = (a11,...,a1,m)", ay =
(a2.1,...,a2.m)T, wherea, is a vector formed from the
first row of the matrixA = (HTS'H)"'HTY ! (see
equation (5)) and., is a vector formed from the second
row of the matrixA.

Finally, taking into account the multi-binomial theorem,
we get the following overbounding for the horizontal
integrity risk

2m m

<X )1

:CTAJ,>HAL2
f(_l)li (xz)dml ATy, (27)

where the natural numbé{ ={;(j ) € N defines the sign
of the mean(—1)%b;, i = 1,.
Let us define the set of vectoB»

B;=(1)"Wby, ... ()W, ) j=1,...,27(28)

Putting together equations (22) and (27), we get the
following overbounding for the horizontal integrity risk

HCZ]Z1 Fy (HALZ &, w;));
1 J=1

- (29)
where A = diag {\nax, Amax} andw; = —A 2 A, B,
and the vecto3;, j = 1,...,2™ is defined in (28).

2) Excess-mass overbounding by using a single Gaus-
sian PDF with adapted meantet us consider that the
vector of biasesB = (by,...,b,)T is such thatB € B.

It is assumed that the PDﬁ,g( ) of the pseudo-range
errors§;, i = 1,...,m, can be upper bounded by the PDF
fv: () of the Gaussian law/ (b;, o7) with the coefficient
of inflation ¢; :

fie(x) <cifp,(x) for z€eR, i=1,...,m.

P (|Qnll2 > HAL)

P Qnll2>HAL)<

|
|
|
|
|
|
|
.

Fig. 7. Overbounding of the pseudo-range erforPDF by using a
single Gaussian PDF with adapted mean.

This method of overbounding is illustrated in Figure 7. By
analogy with the previous method based on two Gaussian
PDFs, the overbounding by using a single Gaussian PDF
with adapted mean can be also interpreted as the method
of “Excess-Mass PDF overbounding” proposed in [8].

In this case, the integrity risk is overbounded in the
following manner

(| Qulla>HAL)= [ - /Hfz (eo)dar - diom

2TAz>HAL? =1

BGIB/ /Hfb x;)dxy - - - iy, (30)

m
<[l
i=1 eTAz>HAL? =1

Putting together equations (20), (22) and (30), the fol-
lowing upper bound for the horizontal integrity risk is
obtained

m
H c,}rgg}g [1 —F (HAL 2 A, w)}

i=1
(31)

B([@nll2>HAL)<

with w = —& > A, B.

Finally, putting together equations (24) and (31), we get
the formula which can be used for practical applications
Hc, [1-F5 (HALZ A

i=1

P (||Qnl2>HAL) < W)l (32)

wherew = —A 2A,B;, j = argiirlnaﬁm{HAhBiHQ}
andB; is a vertex of the hyperrectandﬁe’z’ =1,...,2™m

As previously, to reduce computational burden, the max-
imization of the Euclidean normA;, B||, over the set of
2™ vertices of the hyperrectangl can be simplified by
using the vectoB;;, defined in (25), instead @),. Hence,
putting together (26) and (32), we get the simplified
formula

P (||Qnl2>HAL) < [Hc [1—-F; (HAL? A w¥)],
i=1 (33)

1
wherew* = —A *Bj.
6.3 Conservative bounds for the vertical instantaneous
integrity risk (arbitrary distribution)
As we have mentioned in Section 5, the method of
paired CDF overbounding (Paired Overbound Theorem 1)
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(see details in [5], [6]]) is well-adapted to the calculatio

of conservative bounds for the vertical instantaneous in-
tegrity risk because the LS estimation erépy is a linear
combination of several independent pseudo-range errors
&,...,&m, (see (17)). The conservative bounds €y

can be calculated for arbitrary lower and upper bounds of
the CDFF, ¢(x) of thei-th pseudo-rangé;

Fie(2) < Fie(x) <Fielx) Vo eR

The following paired CDF overbounding for the error
vertical positioningQ, =z — z :

Fe(x) =N (1, 03,) andfg(x) =N (-p,03,).
wherey = Y77 |aslb; andod = >, a3 07, will
be used in the rest of the paper. This means that the

instantaneous vertical integrity risk is upper bounded in
the following manner:

P(]Z— 2| > VAL) < 2& (—M) (34)
7q,

7. CONSERVATIVE BOUNDS FOR THE
INTEGRITY RISKS PER A GIVEN PERIOD
OF TIME

7.1 Autoregressive first order model AR(1)

Experimental calculations show that the sequences
of pseudo-range errorg¢, ;},., are strongly auto-
correlated and that the time series model can be approxi-
mated by AR(1) [12]. Due to the fact that the positioning
errorsz — z, iy — y, andz — z are represented as linear
combinations of the pseudo-range errgss. . ., &, (see
(7)), the horizontal and vertical positioning errors argoal

represented as an AR(1) process. It is assumed that the

vector of pseudo-range errors is represented as an AR(1)
process{&n},,

gn - (1 - A)gnfl + >\<n7 gn - (gn,la cee ;gn,m)T; (35)

wheren = 1,2,3, ... is the current number of time step
— GNSS epochp < 1 — A < 1 is the autoregressive
coefficient, and{¢,},~, is the ii.d. vector innovation
process. As it follows from (7), the vectors of horizontal
and vertical positioning errors are given &, ,, = Ap¢&,
and Q.. = A&, where A, is a sub-matrix composed
of the first two rows of the matrixd (see (7)) and4, is

a sub-matrix composed of the third row of the matrix
(see (7)). Hence,

Qhn = (1=XNQhn-1+ AYnn, (36)
Qv,n = (]- - A)Qv,nfl + Ayv,n; (37)

where the iid. vectors{yn,.},~, (resp. variables
{Yv,n},~,) Obey a certain distributiod}, ,, (resp.F,,) ,
L., Ynn ~ Fhy (r€Sp.yyn ~ Fy ).

7.2 Conservative bounds for the vertical integrity risk
per a given period of time

The very first idea to calculate the probability that
the random walk is absorbed by boundaried and
h by solving integral equations is due to [13], [14].
A pedagogical introduction to the first-passage-problem
can be found in [15, Ch. 2]. The adaptation of general
equations to the case of AR(1) process can be found in
[16]. The recursive equation for the probability of the
eventN, = n is given by (see details in [17]) :

pt =1 [ sty (A s, @)

—h

wheren = 2,3,...,T, p,(u) = P(N, = n|Qvo0 = u),
fy(x) is the PDF ofy,. The initial conditionp; () is
calculated in the following manner

p1(w)=P (|(1 = Nu = Ay > h)

—1-F, (h(l)\A)u>+Fy (h(im). (39)

Finally, the probability of the even{l < N, < T}
provided that@, o = v is given by

T
P(1< N, <T|Quo=u)=Y pa(u). (40)
n=1
If the initial condition @, = w is a random variable,
we have to randomize the result in the following manner
(under assumption that the distribution of initial state is
known) :

I Fu @) pa(x)da
J" Fauo(@)dz

whereu ~ Fy, ,, fq,,(z) is the PDF ofFg, .

Assumption 1Let us assume that the COF, () of the
innovation proces$y,, },,., and the CDFFy, ,(z) of the
initial state@,, o obey the following inequalitﬂy(:c) <
F,(z) < Fy(x) and Fq, ,(z) < Fo,,(x) < Fo, ()
for z € R.

Lemma 1:Let us consider that Assumption 1 is sat-
isfied. Then the upper bouri, (u) for the probability
pn(u) is given by

P(1<N,<T|u€ [~h,h])=

(41)

P = P, ()

(o, ()

h
Zz—(1—=XMNu _
—/ £, <f>]l{ﬁill(z)ZO}p’/rL—l(Z>dZ

—h
h
— (z—(1=-MNu _
—/ hF y (7( \ ) )H{ml(z><<)}piL_1(2)dz, (42)

1 if Als true
0 if Ais false
is the indicator function of the eventl, 7/, ,(z) =

wheren = 2,3,....T, I;4y =
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dp,,_1(z)/dz and the upper bound for the probability given by Lemma 1, where is replaced withzy, u with

p1(u) is given by uz, and the functiorp,,_, (z) is replaced with the function
](Zl UQ)
_ —1=MNuy = [~h—(1-XNu ’
Pl(“)zl—ﬂy(hf LA s — _ 5 2\ = (VR2—2 - (1-Nuy
43) =Dp1| 21\ h* =21 | Fy2 \

Proposition 2: Let us consider that Assumption 1 2 1—»
is satisfied. Then the upper bound for the verti- —ﬁn1(zla— hQ_Z%)Ey2<_ _ZIA ( Juz )

cal integrity risk per a given period of time, =
P(1 <N, <T|u€ [—h,h]) is given by /h2—22 o — (1= Nus
—/ F, (—) pT (21, 22)d2o

(R _ N A
pr < - pT(h)FQu,o(h)7pT(*h)EQU70(*h) \/hzj
ah 1 ZQ*(].*)\)UQ _
B — Fyo )P (21, 22)dz2,
- }EQU,O(x)ﬂ{ﬁw)zo}PT(fﬂ)dm —V/h=32
—h — —
h for —h < z1 < h, I(—h,uz) = I(h,uz) = 0, n
- / Fq, (@) oy<oypr(z)de|,  (44) 2,3,...,T, p*(z1,22) = Iy (zl,z2)>0}Pn 1(21, 2 )
—h p(21,22) = L (z.2)<0)Ppo1(21,22) and
_ OPp—_1(21, 22)
whereh = VAL, a = Fy,  (h) — Fq,,(—h), pr(z) = Pnoi(z1,22) = 57- The upper bound
Zz;zlﬁn(:c) andp’y(z) = dpy(z)/dx. p1(U) for the probabllltypl( ) is given by
z —(1=A
. N P)=1 4 [Fou () i
7.3 Conservative bounds for the horizontal integrity —h A
risk per a given period of time h —(1=2\
+ /E%l (m(f)m) I~ (21, uz)dz1,
The extension of the scalar first-passage-problem to —h
the m-dimensional vector AR(1), defined by equations where T (z1,us2) = L1 (21 uz) 03 L1 (21, u2),
(36), leads to the following recursive equation (for the I~ (21,u2) = H{l,l(ZthO}fl(zl,uQ)

sake of simplicity, only two-dimensional case, = 2, is
considered in this section, see extensiomto> 2 in [17])

I (z1,u2) max {E%Q <\/m)\ (1—Nu 2)
m)=55 [ = [osrn, (52 ) e Fa (Vﬁ - W> ,0}

1Z]|l2<h 45 A
_ _ _ f( ) / 0L, (21, u2)
wheren = 2;'37 . '7T! pn(U) - P(Nh = n|Qh,0 - U)! and[ (21,U,2) _—
f(X) is the PDF ofy,, X,U,Z € R?, dZ = dzidz.
The initial conditionp, (U) is calculated in the following
manner

0z
Proposition 3: Let Us consider that Assumption 2
is satisfied. Then the upper bound for the horizon-
tal integrity risk per a given period of time, =

P(1 < N, <T||U]l2 < h) is given by
nU) = (Il(lf WU — Ayll\z > h)

/ /fy< )U) dZ. (46) by < é

1 Z][2>h h
- /} FQo,l(fvl)H{15<x1><o}16($1)d$11 :
—h

h
— [ Eg, 1 (@)l @)zo0plo(x1)da

The probability of the even{l < N, < T} provided

that Q.0 = U is given by previously defined equation whereh — HAL. Io(—h) — I(h) = 0 and

(40) and the probability? (1 < N, < T|u € [~h, h]) by  To(=h) = To(h)

previously defined equation (41). Io(z1)=Py <T/17 B2 _ x%> Fooo ( B2 _ x%)
Assumption 21 et us assume that the CDE,(X) = ’

F,1(x1)F, 2(x2) of the innovation proces§y, }, -, and . ( e 2>F < 2 2)

the CDF Fo, ,(X) = Fo, ,1(x1)Fg, 2(x2) of the Pr\ 1, 1) £Qo2 i

initial state;, o obey the following inequality”, ;(z) < N

Fyi(z) < Fya(z) and Eg, | (x) < Fg,,.i(z) < a /\/;2—2EQo,z(fﬂz)ﬂ{%(zl,zz)>o}ﬁ%($17xz)dmz

Fg,.,i(x) for z € R, wherei =1, 2. v

Lemma 2:Let us consider that Assumption 2 is satis- B /V h2—ai

il —
fied. Then the upper bound for the probability(U) is 7\/@FQOQ(xQ)]I{ﬁT(JJ,w2)<0}pT(Z1ﬂZQ)dZQﬂ
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dI}(zy)

dx
Opy (21, 125
81‘2

for —h < x1 < h, [j(z1) =

S Pa(X), Pran,a) =
a is given by

, pr(X) =

. The constant

h
a = 7/ FQo,l(ZI>H{I/(x1)ZO}I/($1)d$1
—h

h
- / hEQO,I(:C1>H{I’(;c1)<0}1/($1)dx1a

dI
I'(z1) = d(;l” and  I(z1) =
max {EQ072 h? — :c%) —Fg2 < h?—a23),0¢.

As a final remark, it should be noted that the above
mentioned equations can produce aberrant results for an
unusual choice of relations between the CDF overbounds
(see Assumptions 1 and 2) and the parameteasd h.

7.4 Using the“excess-mass PDF overbounding”

Sometimes it is necessary to use the bounds for the PDF
of Q, and/or for the PDF of),,. Such kind of bounds are
usually used to overbound the distributions with excess-
mass functions (see [8]).

Conservative bounds for both horizontal and vertical
integrity risk per a given period of time are considered
now. For this reason, it is assumed that the dimension of
the vector AR(1) process & > 1.

Assumption 3Let us assume that the PDf;(X) of
the innovation procesgy, },~, and the PDFfq, (X) of
the initial state)y obey the following inequality

fy(X) < Fy(X) and fg,(X) < fo,(X) for X € R™.

Let us assume that Assumption 3 is satisfied. Then the
above-mentioned recursive equations have to be replaced

with the following inequalities
— (-
7,
o ()

(U )\m / / Pr—1(
(47)

1Zl|l2<h
n = 2,3,...,T, and the initial conditiorp, (U) is also
upper bounded in the following manner

U)S)\]%\/\/?y

1Zll2>h

AW) dZ. (48)

The threshold: is equal to HAL or VAL. This method of
the risk overbounding can lead to very conservative results
due to the recursive character of the above-mentioned
equations. This problem can be especially important for
large values of7. Hence, a special attention should
be paid to the choice of the upper bounfi;(X) and

Fao(X).

10

8. NUMERICAL EXAMPLES

The first example is devoted to the conservative bounds
for the horizontal/vertical instantaneous integrity rikket
us consider the following scenario : HAL= 40 m,
VAL = 35 m, the GPS constellation is simulated with
the YUMA almanac, weel)593 (Jan. 2011), available
at http://celestrak.com/. It is assumed that the diagonal
variance-covariance matrix of the pseudo-range noise
is ¥ = diag{4,...,4}m? and the pseudo-range bi-
asesb; are bounded byp; = 3 m, i = 1,...,m.
The geographic coordinates of the user &e\, h) =
(48°16'7",4°3'57”,178 m) and the elevation mask angle
is set to7°. The major radius of the horizontal error

1 . . . . . . .
1000 1500 2000 2500 3000 3500 4000 4500
Elapsed time (sec)

Fig. 8. The major radius of the horizontal error ellipglmax and the
SD o, of the vertical errorQ.,, as functions of the elapsed time.

ellipse v/ Amax and the standard deviation (Sb),, of
the vertical errorQ,, as functions of the elapsed time are
shown in Figure 8. The conservative worst case horizontal
bias || B} ||, the worst case horizontal bigsBy, ||, and
the worst case vertical bigs as functions of the elapsed
time are shown in Figure 9. Finally, the conservative
bounds for the horizontal/vertical instantaneous intggri
risk are presented in Figure 10. The conservative bound
for the horizontal instantaneous integrity risk is calteda
by using (32) with the inflation coefficient; = 3,
1 = 1,...,m. The conservative bound for the vertical
mstantaneous integrity risk is calculated by using (34).
The second example is devoted to Proposition 2 with
the paired CDF overbounding of, and Qy. A special
method of numerical integration based on the Gaussian
quadrature and the 5-point numerical derivative has been
designed to calculate the conservative bounds for the
integrity risk per a given period of time. Let us consider
the following scenario : VAL= 25 m, T" = 150 sec.
It is assumed thaty, = VarQ,, = 12m’ and that
Assumption 1 is satlsﬂed with the following bounds for
the CDF Fy(x) of the innovation proces$y,},-, and
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Fig. 9. The conservative worst case horizontal Hjds; ||, the worst

case horizontal biag|By||, and the worst case vertical bigs as
functions of the elapsed time.
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10

Fig. 10. The conservative bounds for the horizontal/vattinstanta-
neous integrity risk.

the CDF Iy, ,(x) of the initial stateQ, o :

F,(x) = N (1,02) < Fy(x) < Fy(w) = N (. 0?)
and
;ZEZ(;?U,O Cla = /\/-(IL) Crééi, ) f; };};21:,0 Cla fsg-zs;cng,o Cla = /\/-( __-AL7 Créé,, )7

wherey =8 m, 02 = 1_(17;”2032” and1—\ € [0,0.9].
The stopping boundaryr in (12) is set to VAL.
Let us now compare the vertical integrity risk
P(1 < N, <Tlu € [—h,h]) defined by equation (41) for
the Gaussian innovation process and the initial state with
the “worst case expectation”, i.@.,= 8 m, with the upper
bound of this risk given by Proposition 2 for unknown
distributions of the innovation process and initial state.
The risk and its conservative overbound as functions of
1 — X\ are presented in Figure 11. The risk that the
absorption occurs at one of the barrierd = —VAL

11

145

13t - + - Risk for the w. c. Gaussian distribution
—e— Conservative bound for the risk

12

11r

101

61 N

Probability to reach the bounds [-h, h]

Fig. 11. The conservative bound of the vertical integrigknper a given
period of time and the vertical integrity risk calculated floe worst case
(w. c.) Gaussian AR(1) process.

or h = VAL at or before thel50-th step for the known
Gaussian AR(1) process with= 8 m is shown in dashed
line and the its overbound for the AR(1) process with
unknown distributions is shown in solid line in Figure 11.

ge 0 .
7L
=
Tef
[%2]
e}
c
3 5F
Qo
[}
s - - —
= 4F - + = Risk for the Gaussian distribution
§ —e— Conservative bound for the risk
E
2
=
22
o
a
1k
I e It e R el ] -
0 . . . B iy,
0 0.2 0.4 0.6 0.8 1

1-A

Fig. 12. The conservative bound of the vertical integritgkriper a
given period of time by using the excess-mass PDF overbognalind
the vertical integrity risk calculated for the Gaussian ARgrocess.

The third example is devoted to the usage of the
excess-mass PDF overbounding gf. Let us consider
the following scenario : VAL= 25 m, T' = 50 sec. The
scalar AR(1) process is given by equation (37) with the
autoregressive coefficiedt— A\ € [0,0.99]. It is assumed
that Assumption 3 is satisfied with the following excess-
mass overbound for the PD,(z) of the innovation
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process{yn}n21 :

fy(@) < fy(x) = c- f(a), (49)
where f(z) is the PDF of the Gaussian distribution
N(Ma 1_(§2_)\) U%Q,U)a no= 10 m, O-év = Va’rQ’U,TL =

12m? andc¢ = 1.1. The stopping boundark in (12) is

set to VAL. The comparison between the Gaussian AR(1)
process and the AR(1) process with the innovation PDF
overbounded with the excess-mass function is presented
in Figures 12. It follows from Figures 11 and 12 that
the conservative bound for the vertical integrity risk per
a given period of time obtained by using the excess-mass
PDF overbounding is more conservative that the same
bound obtained by using the paired CDF overbounding.

9. CONCLUSION

This paper addresses the problem of horizontal/vertical
integrity risk overbounding. Two new methods of the in-
stantaneous (i.e., per one GNSS measurement) horizontal
integrity risk overbounding are proposed. These methods
provide the users with a conservative estimation of the
probability that the horizontal error is greater than a
prescribed horizontal protection level. The calculatidn o
conservative bounds for the horizontal/vertical intsgrit
risk per a given period of time is reduced to the first-
passage-problem for the autoregressive process. A nu-
merical method based on the integral equations has been
proposed to find a conservative bound for the probability
that the autoregressive process absorption at the barrier
occurs at or before a given period of time.

The theoretical findings proposed in the paper represent
a mathematical background for the vertical and horizontal
integrity risk overbounding in exact terms following the
requirements of the MOPS for GPS/Galileo.
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