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ABSTRACT

The advantages of a navigation system that can mon-
itor its own integrity are obvious. All GNSS integrity
monitoring methods may be broadly divided into two
classes: “active integrity methods” and “passive integrity
methods”. The active integrity methods, like ARAIM, are
very efficient in the case of unbounded GNSS channel
degradations.

However, nowadays even bounded degradations of the
pseudo-range measurements lead to an unacceptable ad-
ditional bias of the users fix, due to reduced alarm
limits. In such a case, the solution consists in the passive
integrity method, which is called “overbounding”. The
overbounding approach allows all pseudo-range measure-
ments without rejection. The idea of the approach is to
define conservative bounds (overbounds) for the cumula-
tive distribution function (CDF) of pseudo-range errors in
order to get a conservative bound for the integrity risk.

The known methods of overbounding are applicable to
the calculation of conservative bounds for the distribution
of a linear combination of several random variables.
Hence, these methods can be used to calculate the in-
stantaneous integrity risk overbounding for the vertical
positioning but they cannot be used to calculate the in-
stantaneous integrity risk overbounding for the horizontal
positioning. This is because the horizontal positioning
error is a nonlinear combination of several pseudo-range
errors.

Moreover, the MOPS for GPS/Galileo requires calcu-
lating the integrity risk “per a given period of time” (e.g.,
“per approach” or “per hour”). Because the pseudo-range

errors are strongly auto-correlated, the passage from the
instantaneous integrity risk overbounding to the integrity
risk overbounding per a given period of time is not trivial.

The original contribution of this paper is twofold. First,
we propose two new conservative bounds for the integrity
risk in the horizontal plane by using one or two Gaussian
PDFs with an inflation coefficient. Second, we calculate
the impact of the pseudo-range errors autocorrelation
on the conservative bounds for the vertical/horizontal
integrity risks.

1. INTRODUCTION AND MOTIVATION

The GNSS integrity monitoring methods can be broadly
divided into two classes: “active integrity methods” and
“passive integrity methods”. For example, the Advanced
Receiver Autonomous Integrity Monitoring (ARAIM)
with Fault Detection/Exclusion (FDE) functions belongs
to the class of active integrity methods. If an unbounded
additional pseudo-range bias in one (or two) GNSS chan-
nel(s) occurs at an unknown time then the outputs of the
Least Squares (LS) algorithm are not an optimal solution.
Such unbounded pseudo-range bias leads to an unbounded
additional bias of the user’s fix, which is clearly very
undesirable. In this case, the only solution to preserve
a high constant integrity level of GNSS positioning is to
use the active integrity methods, like ARAIM.

However, nowadays another type of problem arises due
to reduced horizontal/vertical alarm limits: some bounded
degradations (additional biases and/or CDF shape defor-
mation) of (maybe several simultaneous) pseudo-range
measurement(s) lead to an unacceptable additional bias
of the user’s fix. Unfortunately, the probabilities of false
alarm, missed detection and false isolation of ARAIM
FDE algorithms (even in the case of optimal statistical
tests) for such bounded degradations do not satisfy the
advanced MOPS for GPS/Galileo for some safety-critical
mode of flight.

In that case, a reasonable solution to the problem
of integrity monitoring consists in the passive integrity
method, based on pseudo-ranges “overbounding”. The
overbounding approach allows all pseudo-range measure-
ments without rejection. The concept of overbounding
suggests to define conservative bounds (overbounds) for
the cumulative distribution function (CDF) or probability
density function (PDF) of pseudo-range errors and to get
a conservative bound for the integrity risk by using such
overbounds for the pseudo-range errors.
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The rest of the paper is organized as follow. The
pseudo-range measurement equations for single/double
frequencies are introduced in Section 2. The navigation
solution and the expression of the horizontal and vertical
positioning errors as functions of the pseudo-range errors
are given in Section 3. Next, the problem of overbound-
ing is stated and the original contribution is defined in
Section 4. A short critical analysis of the overbounding
methods available in the literature is given in Section 5.
The overbounding for horizontal/vertical instantaneous
integrity risk is calculated in Section 6. The overbounding
for horizontal/vertical “per-given-period-of-time” integrity
risk is calculated in Section 7. Here, we study the impact
of the pseudo-range errors autocorrelation on the “per-
given-period-of-time” integrity risk. Three numerical ex-
amples of overbounding are given in Section 8. Finally,
some conclusions are drawn in Section 9.

2. MEASUREMENT EQUATIONS

The navigation solution is based upon accurate measur-
ing the distance (range) from several satellites with known
locations to a user (vehicle). Let us assume that there are
m satellites located in three-space (ECEF coordinates) at
the known positionsXi = (xi, yi, zi)

T , i = 1, . . . ,m,
and a user atXu = (x, y, z)T . The pseudo-rangesri
(i = 1, . . . ,m) from the navigation satellites to the user
can be written as

ri = di(x, y, z) + c tr + ξi, (1)

where di(x, y, z) = ‖Xi − Xu‖2 is the true distance
from the i-th satellite to the user,tr is a user clock bias,
c ≃ 2.9979 · 108m/s is the speed of light andξi is an
additive error of the pseudo-rangeri. Let us define the
vectorξ = (ξ1, . . . , ξm)T of additive pseudo-range errors
at the user’s position, the vectorB = (b1, . . . , bm)T ,
bi = E(ξi), of nominal pseudo-range biases (unknown but
bounded mean error) and the diagonal variance-covariance
matrix Σ = diag

{
σ2
1 , . . . , σ

2
m

}
, where the variances

σ2
i = Var(ξi), i = 1, . . . ,m, are defined as functions

of several parameters, for instance, elevation angles.
Let us suppose that the distances from the satellites to

the user (see equation (1)) are measured by using two
frequenciesf1 andf2 (for example L1 and E5a) :

r1, i = di(x, y, z) + c tr + ξ1, i frequencyf1
r2, i = di(x, y, z) + c tr + ξ2, i frequencyf2 (2)

The dual-frequency (corrected) pseudo-ranger1−2, i is a
linear combination of the pseudo-rangesr1, i and r2, i
measured with the frequenciesf1 andf2 [1] :

r1−2, i =
γ

γ − 1
r1, i −

1

γ − 1
r2, i

= di(x, y, z) + c tr + ξ1−2, i,

where ξ1−2, i = [γ/(γ − 1)]ξ1, i − [1/(γ − 1)]ξ2, i,
γ = (f1/f2)

2
> 1. By analogy with the mono-frequency

signal, let us define the vectorξ1−2 of dual-frequency
pseudo-range errors, the vectorB1−2 of nominal biases
and the diagonal variance-covariance matrixΣ1−2.

3. NAVIGATION SOLUTION

Let us first linearize the measurement equations (1)
and (2) around a working pointXu 0 = (x0, y0, z0)

T . In
fact, the mathematical background is essentially the same
and the only difference is the vector of nominal bounded
biases and the matrix of variances of pseudo-range errors.
Let us considerri as a function ofx, y, z and tr :

(Xu, tr) 7→ ri = di(x, y, z) + ctr + ξi (3)

and let us introduce the following vectors:R =
(r1, . . . , rm)T , D = (d1, . . . , dm)T andX = (XT

u , ctr)
T .

For the sake of simplicity, we consider in the rest of
the paper that the ECEF coordinates is transformed to the
local East, North, Up (ENU) coordinates. By linearizing
the pseudo-range equation with respect to the vectorXu

around the working pointXu 0 = (x0, y0, z0)
T , we get

the measurement equation

Y = R−D0 ≃ H(X −X0) + ξ, (4)

where Y = (y1, . . . , ym)T , D0 = (d1 0, . . . , dm 0)
T ,

di 0 = ‖Xi − Xu 0‖2, X0 = (XT
u 0, 0)

T and H =
∂R
∂X

∣∣
X=X0

is a Jacobian matrix of size(m × 4). In the
case of dual-frequency measurements,R is replaced by
R1−2 = (r1−2, 1, . . . , r1−2, m)T and ξ by ξ1−2 in (4).
The LS method :

X̂=X0+A(R−D0), A=(HTΣ−1H)−1HTΣ−1. (5)

is the best linear unbiased estimator ofX under assump-
tion thatm ≥ 5, B = E(ξ) = 0 and cov(ξ) = Σ (in the
dual-frequency case,Σ = Σ1−2) is known, see details in
[2], [3]. Moreover, it follows from the theorem of Rao-
Cramer [2] that the LS method reaches the Cramér-Rao
lower bound in the class of unbiased estimator ofX : if
ξ ∼ N (0,Σ) then

covX

(
X̃
)
≥ covX

(
X̂
)
=
(
HTΣ−1H

)−1
, (6)

whereX̃ is any unbiased estimator ofX andX̂ is the LS
estimator and simultaneously a lower bound in the class
of unbiased estimators.

To calculate a conservative bound for the integrity
risk, it is necessary to express the horizontal and vertical
positioning errors as functions of the pseudo-range errors
ξ1, . . . , ξm. As it follows from (5), the vector of posi-
tioning errorsX̂ − X (in ENU coordinates) is a linear
combination of the pseudo-range errorsξ1, . . . , ξm

X̂ −X = Aξ. (7)

4. PROBLEM STATEMENT AND ORIGINAL CON-
TRIBUTION

If the distribution of the pseudo-range errorsξ is
GaussianN (B,Σ), where B = E(ξ) = 0 and the
variance-covariance matrixcov(ξ) = Σ is known, the esti-
mationX̂ realizes the smallest possible ellipsoid of errors
X̂ − X . But the LS estimation given by (5) is optimal
only theoretically, under the above-mentioned conditions.
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We are interested what happens ifB = E(ξ) 6= 0,
the variance-covariance matrixΣ is only partially known
and, moreover, the distributionFξ(x) of the pseudo-range
errors ξ (or ξ1−2) is unknown but only conservative
bounds (overbounds) for the CDFFξ(x) and/or PDF
fξ(x) = dFξ(x)/dx of pseudo-range errors are available.
The question is how to get conservative bounds for the
integrity risk in such situation.

4.1 Instantaneous integrity risk overbounding

The instantaneous (per GNSS epoch) integrity risk for
the horizontal and vertical positioning is defined by the
following probabilities

P (‖Qh‖2 ≥ HAL) , (8)

where Qh = (x̂ − x, ŷ − y)T and HAL means the
Horizontal Alarm Level, and

P (|Qv| ≥ VAL ) , (9)

whereQv = ẑ − z and VAL means the Vertical Alarm
Level.

Hence, the first goal of this paper is to calculate
conservative upper bounds for the horizontal and verti-
cal positioning integrity risk, defined in (8) and (9), as
functions of the overbounds for the CDFFξ(x) and/or
PDF fξ(x).

4.2 “Per a given period of time” integrity risk over-
bounding

Nevertheless, in reality, the MOPS for GPS/Galileo
require calculating the integrity risk per a given period
of time (e.g., “per approach” or “per hour”). Because
the pseudo-range errors are strongly auto-correlated, the
passage from the instantaneous risk to the risk per a given
period of time and its overbounding are not trivial. Let us
define two random sequences of positioning errors :

{Qh,n}n≥1 and {Qv,n}n≥1 , (10)

whereQh,n = (x̂n − xn, ŷn − yn)
T , Qv,n = ẑn − zn,

n = 1, 2, 3, . . . is the current number of time step (GNSS
epoch) and the following stopping timesN :

Nh = inf {n ≥ 1 : ‖Qh,n‖2 ≥ HAL} , (11)

Nv = inf {n ≥ 1 : |Qv,n| ≥ VAL } . (12)

Therefore, the horizontal and vertical integrity risk per
a given period of timeT is defined as the following
conditional probabilities

P (Nh ≤ T | ‖Qh,0‖2 < HAL) (13)

and
P (Nv ≤ T ||Qv,0| < VAL ) . (14)

provided that the starting pointQh,0 (resp.Qv,0) satisfies
the condition‖Qh,0‖2 < HAL (resp. |Qv,0| < VAL).

The second goal of this paper is to calculate conser-
vative upper bounds for the horizontal and vertical posi-
tioning integrity risk per a given period of time defined

in (13) and (14) as functions of the pseudo-range auto-
correlations, the overbounds for the CDFFξ(x) and/or
PDF fξ(x).

4.3 The original contribution of this paper

First , we propose two new methods of overbounding
in the horizontal plane. It is assumed that the degradation
of the pseudo-range error with the PDFfξi(x) leads
to two different phenomena :i) the deformation of the
PDF fξi(x) shape; ii) the emergence of an additional
(unknown but bounded) biasbi in the pseudo-range errors
ξi. To cover this degradation, it is proposed to use one or
two Gaussian PDFs with an inflation coefficient. These
conservative Gaussian bounds for pseudo-range errors
ξ1, . . . , ξm are transformed into the conservative bound
for the instantaneous integrity risk (8) in the horizontal
plane. Simple analytical and numerical expressions are
proposed for such a conservative bound.

Second original contribution consists in establishing
the impact of the pseudo-range errors autocorrelation on
the conservative bound for the vertical/horizontal integrity
risks per a given period of timeT . The proposed solution
is reduced to the first-passage-problem for the autore-
gressive first order model AR(1). In the case of hori-
zontal positioning, our goal is to calculate a conservative
bound for the probabilityP (Nh ≤ T | ‖Qh,0‖2 < HAL)
that the vector AR(1) process reaches the circular absorb-
ing boundary of radius HAL during a given periodT
(expressed as the number of time units, i.e., GNSS epochs
that have elapsed since a specified epoch). In the case of
vertical positioning, our goal is to calculate a conservative
bound for the probabilityP (Nv ≤ T ||Qv,0| < VAL ) that
the scalar AR(1) process reaches the absorbing boundary
±VAL during a given period of timeT .

The proposed contributions represent a mathematical
background to formalize the vertical and horizontal in-
tegrity risk overbounding in exact terms following the
requirements of the MOPS for GPS/Galileo.

5. KNOWN METHODS OF OVERBOUNDING

The goal of this section is to recall the known methods
of overbounding. The section is concluded by formulating
some open problems.

Three main methods of overbounding for scalar random
variables are available in the literature :

• the method of “Single CDF overbounding” (see
DeCleene [4]) applicable to symmetric and unimodal
distributions;

• the method of “Paired CDF Overbounding” (see Rife,
Pullen, Enge, and Pervan [5], [6], [7];

• the method of “Excess-Mass CDF overbounding”
(see Rife, Walter and Blanch [8], [9], [10].

5.1 Single CDF overbounding

Definition 1: The single CDF overbounding is defined
as follows [4]:

Fo,ξ(x) ≥ Fξ(x) ∀x ≤ 0 et Fo,ξ(x) ≤ Fξ(x) ∀x > 0,
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O x

y

y = Fξ(x)

y = Fo,ξ(x)

1

0.5

Fig. 1. Single CDF overbounding.

whereFξ(x) is the CDF of the random variableξ, Fo,ξ(x)
is the bound for the CDFFξ(x).
This type of overbounding is shown in Figure 1.

Proposition 1 (DeCleene [4]):Let us consider two inde-
pendent random variablesξ andη. Their CDF functions
are denoted asFξ(x) and Fη(x) and their functions of
overbounding are denoted asFo,ξ(x) and Fo,η(x) (see
Definition 1). It is considered that the distributions are
zero-mean, unimodal and symmetric. Then

Fo,ξ+η(x) ≥ Fξ+η(x) ∀x ≤ 0

and
Fo,ξ+η(x) ≤ Fξ+η(x) ∀x > 0

whereFo,ξ+η(x) = (Fo,ξ ∗Fo,η)(x) andFξ+η(x) = (Fξ ∗
Fη)(x) are the convolutions of the CDF.

5.2 Paired CDF Overbounding

O x

y

y = Fξ(x)

y = F ξ(x)

y = F ξ(x)

1

Fig. 2. Paired CDF overbounding.

Definition 2: The paired CDF overbounding is defined
as follows (see [5], [6]) :

F ξ(x) ≤ Fξ(x) ≤ F ξ(x) ∀x ∈ R

This overbounding is shown in Figure 2.
Theorem 1 (J. Rife, S. Pullen, P. Enge et B. Pervan [5],

[6]): Let us consider two independent random variables
ξ and η with the CDFFξ(x) and Fη(x) and the func-
tions of overboundingF ξ(x), F ξ(x) andF η(x), F η(x),
respectively. Then

F ξ+η(x) ≤ Fξ+η(x) ≤ F ξ+η(x) ∀x ∈ R

whereF ξ+η(x) = (F ξ∗F η)(x), F ξ+η(x) = (F ξ∗F η)(x)
andFξ+η(x) = (Fξ ∗ Fη)(x).

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

O x

y

y = Fξ(x)

y = F ξ(x)

y = F ξ(x)

1

Non-usable part

Non-usable part

b b

Fig. 3. Excess-Mass CDF overbounding.

5.3 Excess-Mass CDF overbounding

The “Excess-Mass CDF overbounding” can be inter-
preted as the extension of the paired CDF overbounding,
where the natural constraints :0 ≤ F ξ(x) ≤ F ξ(x) ≤ 1
are not respected and the boundsx 7→ F ξ(x) et x 7→
F ξ(x) can be negative or positive but greater than1.
This situation is illustrated in Figure 3. The idea of this
approach is to get a more flexible boundsx 7→ F ξ(x)

andx 7→ F ξ(x). If the bounds are based on the Gaussian
distribution [8], [9], [10], the overbounding equations are :

F ξ(x;K, θ, γ) = K

∫ x

−∞

f(u; θ, γσ)du+ (1−K) (15)

and

F ξ(x;K, θ, γ) = K

∫ x

−∞

f(u;−θ, γσ)du, (16)

wheref(x; θ, σ) is the PDF of the Gaussian lawN (θ, σ2).
The convolutions defined in Theorem 1 are also appli-
cable to the bounds defined by the “Excess-Mass CDF
overbounding”.

5.4 Critical analysis and open problems

• The weak point of the single CDF overbounding
is the necessity of very strong assumptions : the
distributions of the pseudo-range errors should be
zero-mean, unimodal and symmetric. It seems that
so strong assumptions are not compatible with the
biases bi in the pseudo-range errorsξi and the
deformation of the PDFfξi(x) shape.

• The strong point of the paired CDF overbounding is
that the distributions can be arbitrary (even those that
are not zero-mean, unimodal and symmetric). This
method seems to be more realistic, because the biases
bi in the pseudo-range errorsξi and the deformation
of the PDF fξi(x) shape are compatible with the
paired CDF overbounding.

• The excess-mass CDF overbounding is a potentially
interesting approach but it can produce very conser-
vative bounds for the CDF.

The paired CDF overbounding (Paired Overbound The-
orem 1) is well-adapted to the situation where the es-
timation is a linear combination of several independent
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pseudo-range errorsξ1, . . . , ξm. As it follows from (7),
the LS estimation error on the vertical axis is calculated
as a weighted sum of the pseudo-range random errors
ξi ∼ Fξi , whereFξi denotes the CDF of the pseudo-range
ξi :

Qv = ẑ − z =

m∑

i=1

a3,iξi (17)

whereaj,i is the (j, i)-th entry of the matrixA. Hence,
Theorem 1 can be easily applied to the vertical risk
overbounding.

On the contrary, in the horizontal risk overbounding,
the radial errorr is a nonlinear function of several
independent pseudo-range errorsξ1, . . . , ξm.

r = ‖Qh‖2 =
√
(x̂− x)2 + (ŷ − y)2, (18)

whereQh = (x̂− x, ŷ − y)T with

x̂− x =

m∑

i=1

a1,iξi, ŷ − y =

m∑

i=1

a2,iξi (19)

and aj,i is the (j, i)-th entry of the matrixA. Hence,
Theorem 1 is not applicable to the horizontal risk over-
bounding.

All three above-mentioned methods of overbounding
are applicable only for the calculation of the conservative
bounds for the instantaneous vertical risk.

Finally, it can be concluded that there are no methods
available in the literature

• for calculation of the conservative bounds for the
instantaneous horizontal risk;

• for calculation of the conservative bounds for the
vertical/horizontal integrity risks per a given period
of time T .

6. CONSERVATIVE BOUNDS FOR THE INSTAN-
TANEOUS INTEGRITY RISKS

The main goal of this section is to find conservative
bounds for the horizontal instantaneous integrity risk. This
problem is divided in two steps :i) bounding the impact
of the pseudo-range biases on the conservative bounds for
Gaussian distributions;ii) bounding the impact of the PDF
fξi(x) shape deformation on the conservative bounds for
an arbitrary distribution. Finally, the conservative bound
for the vertical instantaneous integrity risk will be briefly
discussed by using Theorem 1.

6.1 Conservative bounds for the horizontal instanta-
neous integrity risk (Gaussian distribution)

As it follows from Section 4, a more realistic working
hypothesis includes an additional bounded biasbi in
the pseudo-range measurement (1), (2). Let us consider
that the errorsξi are distributed following the Gaussian
distributionξi ∼ N (bi, σ

2
i ) and that the absolute value of

the biasbi of the pseudo-range measurementri is upper
bounded bybi. Hence

−bi ≤ bi ≤ bi, i = 1, . . . ,m.

This last condition can be interpreted as the “Paired CDF
overbounding” in the case where the class of possible
distributions of the pseudo-range errorsξi is restricted to a
family of Gaussian distributions with bounded means. The
functions of overbounding are given by (see Definition 2)

F i,ξ(x) = N (bi, σ
2
i ) and F i,ξ(x) = N (−bi, σ

2
i ).

Let us recall some useful results on the probability
calculation for Gaussian quadratic forms. Suppose that
X ∼ N (θ,Σ), Σ ∈ Mℓ×ℓ is the variance-covariance
matrix ofX andθ ∈ R

ℓ is the vector of means ofX . Our
goal is to calculate the probability of the event‖X‖2 ≥ h
by using the functionFℓ(y,Λ, ω)

P (‖X‖2 ≥ h) = 1− Fℓ

(
h2,Λ, ω

)
. (20)

This function

Fℓ(y,Λ, ω) = (2π)−
ℓ
2

∫
· · ·
∫

D={(W−ω)TΛ(W−ω)≤y}

exp

{
−1

2
‖W‖22

}
dW,

whereW ∈ R
ℓ denotes the support of the random vector

UT ξ ∼ N (0, Iℓ) and ω = −Λ− 1

2UT θ, is well-known
in the statistical literature. A numerical method of its
calculation is given in [11].

HAL

Ellipse of errors

True position

x̂− x (m)

ŷ
−

y
(m

)

Bh

0

0

20

20

40

40

60

60

−20

−20

−40

−40
−60−60

√
λmax

√
λmin

Fig. 4. The vector of systematic errorsBh and the orientation of the
error ellipse. The major radius and minor radius are denotedby

√

λmax

and
√

λmin, respectively.

Let us assume thatX = Qh, θ = Bh, ℓ = 2 and
h = HAL. The analysis of the functionF2(y,Λ, ω) shows
that there are two factors determining the probability (20):

• the vector of systematic horizontal errorsBh ∈ R
2;

• the orientationϕ of the ellipse with respect to the
vectorBh.

This situation is illustrated by Figure 4.
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Convex polygonP

Disk of radius
√
λmax

Bh

vertexBi

coordinates

Fig. 5. The convex polygonP obtained by a linear mapping (defined
by the matrixAh) of the setB onto the setP.

By using (7), the vector of systematic errorsBh can
be expressed as a linear function of the vector of pseudo-
range biasesB :

Bh = AhB, Ah =

(
a1,1 · · · a1,m
a2,1 · · · a2,m

)
.

Let us define the following hyperrectangleB ={
X ∈ R

m|xi ∈ [−bi, bi], i = 1, . . . ,m
}

and a linear
mapping (defined by the matrixAh) of the setB onto
the setP. The setP is a convex polygon. This convex
polygon is shown in Figure 5 for a toy example of four
visible satellites, i.e.,m = 4 andbi = 1, i = 1, . . . , 4.

Because the vector of pseudo-range biasesB is un-
known but bounded, i.e.,B ∈ B, the problem of
overbounding in the horizontal plane is reduced to the
maximization of the probability to lose integrity (i.e.,
instantaneous risk of integrity). In such a way, we get a
conservative (worst-case) estimation of the instantaneous
risk of integrity. The maximization of this probability is
equivalent to the minimization of the functionF2(. . .) :

max
B∈B,ϕ

P (‖Qh‖2 ≥ HAL) = 1−

min
B∈B,ϕ

F2

(
HAL2,Λ,−Λ−1

2UTAhB
)
, (21)

where the horizontal errorsQh = (x̂ − x, ŷ − y)T (in
ENU coordinates) are defined in (19), the matricesΛ and
U are calculated by using the variance-covariance matrix
Σ = cov (Qh) = UΛUT .

The calculation of the probability
PBh,ϕ (‖X‖2 ≥ HAL), defined by (20), for different
valuesBh and for different orientationsϕ of the ellipse,
represents a heavy computational burden (especially for
on-board computer). To reduce computational burden, the
error ellipse can be overestimated by a disk of the radius√
λmax, where λmax = max{λ1, λ2} and λ1, λ2 are

eigenvalues of the matrixΣ. In this case, the probability
to lose integrity is overbounded in the following manner

PBh,ϕ (‖X‖2 ≥ HAL) ≤ 1− F2

(
HAL2,Λ, ω

)
, (22)

where Λ = diag {λmax, λmax} and ω = −Λ
− 1

2Bh.
This overbounding simplifies the problem of minimization
(21). By putting together (21) and (22), we get

max
B∈B,ϕ

P (‖Qh‖2 ≥ HAL) ≤ 1−

min
B∈B

F2

(
HAL2,Λ,−Λ

− 1

2AhB
)
, (23)

where Λ = diag {λmax, λmax}. In this last case, the
function F2(. . .) depends on the norm‖AhB‖2 and
this function‖AhB‖2 7→ F2(. . . , ‖AhB‖2) is monotone
decreasing for any given HAL andΛ. Therefore, the upper
bound for the horizontal integrity risk (defined in the right-
hand side of (23)) is a monotone increasing function of
the Euclidean norm‖AhB‖2. Finally, the problem of con-
servative estimation of the horizontal integrity risk (21)–
(23) is reduced to the maximisation of the Euclidean norm
over the convex polygonP. The maximum is reached in a
vertex of the convex polygonP. Hence, the overbounding
for the instantaneous risk of integrity is given by

max
B∈B,ϕ

P(‖Qh‖2≥HAL)≤1−F2

(
HAL2,Λ,−Λ

− 1

2Bh

)
,

(24)
whereBh = AhBj , j = arg max

i=1,...,2m
{‖AhBi‖2}, and

Bi is a vertex of the hyperrectangleB, i = 1, . . . , 2m.
As it follows from (24), the maximization of the

Euclidean norm‖AhB‖2 over the set of2m vertices of
the hyperrectangleB can be simplified by using the vector
B∗

h defined as follows

B∗
h =

(
|a1,1|b1 + · · · + |a1,n|bm
|a2,1|b1 + · · · + |a2,n|bm

)
. (25)

instead ofBh. Hence, the following (more conservative)
overbounding for the horizontal integrity risk is given by

max
B∈B,ϕ

P(‖Qh‖2 ≥ HAL)≤1−F2

(
HAL2,Λ,−Λ

− 1

2Bh

)

≤1−F2

(
HAL2,Λ,−Λ

− 1

2B∗
h

)
. (26)

6.2 Conservative bounds for the horizontal instanta-
neous integrity risk (arbitrary distribution)

1) Excess-mass overbounding by using two Gaussian
PDFs: Let us consider that the true PDFfi,ξ(x) of the
pseudo-range errorsξi can be upper bounded by using two
PDFsfbi(x) andf−bi(x) of two Gaussian lawsN (bi, σ

2
i )

andN (−bi, σ
2
i ) :

fi,ξ(x)≤ci[fbi(x)+f−bi(x)] for x ∈ R andi=1, . . . ,m,

where ci is the inflation coefficient andbi > 0. This
method of overbounding, illustrated in Figure 6, can be
interpreted as the method of “Excess-Mass PDF over-
bounding” proposed in [8].
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fi(x)

O x

y

ci [fbi(x) + f−bi(x)]

bi−bi

Fig. 6. Overbounding of the pseudo-range errorξ̃i PDF by using two
Gaussian PDFs.

To estimate the horizontal integrity risk, it is necessary
to calculate the following multiple integral :

P(‖Qh‖2 ≥ HAL)=
∫

· · ·
∫

xTÃx≥HAL2

m∏

i=1

fi,ξ(xi)dx1 · · · dxm

≤
∫

· · ·
∫

xTÃx≥HAL2

m∏

i=1

ci [fbi(xi) + f−bi(xi)] dx1 · · · dxm,

with Ã = axa
T
x + aya

T
y , ax = (a1,1, . . . , a1,m)T , ay =

(a2,1, . . . , a2,m)T , whereax is a vector formed from the
first row of the matrixA = (HTΣ−1H)−1HTΣ−1 (see
equation (5)) anday is a vector formed from the second
row of the matrixA.

Finally, taking into account the multi-binomial theorem,
we get the following overbounding for the horizontal
integrity risk

P (‖Qh‖2 ≥ HAL) ≤
2m∑

j=1

∫
· · ·
∫

xTÃx≥HAL2

m∏

i=1

ci ·

f(−1)ℓibi(xi)dx1 · · · dxm, (27)

where the natural numberℓi = ℓi(j) ∈ N defines the sign
of the mean(−1)ℓibi, i = 1, . . . ,m.

Let us define the set of vectorsBj

Bj=((−1)ℓ1(j)b1, . . . , (−1)ℓm(j)bm)T, j=1, . . . , 2m.(28)

Putting together equations (22) and (27), we get the
following overbounding for the horizontal integrity risk

P(‖Qh‖2≥HAL)≤
[

m∏

i=1

ci

]
2m∑

j=1

[
1−F2

(
HAL2,Λ, ωj

)]
,

(29)

whereΛ = diag {λmax, λmax} and ωj = −Λ
− 1

2AhBj

and the vectorBj, j = 1, . . . , 2m is defined in (28).
2) Excess-mass overbounding by using a single Gaus-

sian PDF with adapted mean:Let us consider that the
vector of biasesB = (b1, . . . , bm)T is such thatB ∈ B.
It is assumed that the PDFfi,ξ(x) of the pseudo-range
errorsξi, i = 1, . . . ,m, can be upper bounded by the PDF
fbi(x) of the Gaussian lawN (bi, σ

2
i ) with the coefficient

of inflation ci :

fi,ξ(x) ≤ cifbi(x) for x ∈ R, i = 1, . . . ,m.

fi(x)

O x

y

cifbi(x)

bi−bi

Fig. 7. Overbounding of the pseudo-range errorξ̃i PDF by using a
single Gaussian PDF with adapted mean.

This method of overbounding is illustrated in Figure 7. By
analogy with the previous method based on two Gaussian
PDFs, the overbounding by using a single Gaussian PDF
with adapted mean can be also interpreted as the method
of “Excess-Mass PDF overbounding” proposed in [8].

In this case, the integrity risk is overbounded in the
following manner

P (‖Qh‖2≥HAL)=
∫

· · ·
∫

xTAx≥HAL2

m∏

i=1

fi,ξ(xi)dx1 · · · dxm

≤
[

m∏

i=1

ci

]
max
B∈B

∫
· · ·
∫

xTAx≥HAL2

m∏

i=1

fbi(xi)dx1 · · · dxm.(30)

Putting together equations (20), (22) and (30), the fol-
lowing upper bound for the horizontal integrity risk is
obtained

P(‖Qh‖2≥HAL)≤
[

m∏

i=1

ci

]
max
B∈B

[
1−F2

(
HAL2,Λ, ω

)]

(31)

with ω = −Λ
− 1

2AhB.
Finally, putting together equations (24) and (31), we get

the formula which can be used for practical applications

P (‖Qh‖2≥HAL)≤
[

m∏

i=1

ci

]
[
1−F2

(
HAL2,Λ, ω

)]
, (32)

whereω = −Λ
− 1

2AhBj , j = arg max
i=1,...,2m

{‖AhBi‖2}
andBi is a vertex of the hyperrectangleB, i = 1, . . . , 2m.
As previously, to reduce computational burden, the max-
imization of the Euclidean norm‖AhB‖2 over the set of
2m vertices of the hyperrectangleB can be simplified by
using the vectorB∗

h, defined in (25), instead ofBh. Hence,
putting together (26) and (32), we get the simplified
formula

P (‖Qh|2≥HAL)≤
[

m∏

i=1

ci

]
[
1−F2

(
HAL2,Λ, ω∗

)]
,

(33)

whereω∗ = −Λ
− 1

2B∗
h.

6.3 Conservative bounds for the vertical instantaneous
integrity risk (arbitrary distribution)

As we have mentioned in Section 5, the method of
paired CDF overbounding (Paired Overbound Theorem 1)
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(see details in [5], [6]]) is well-adapted to the calculation
of conservative bounds for the vertical instantaneous in-
tegrity risk because the LS estimation errorQv is a linear
combination of several independent pseudo-range errors
ξ1, . . . , ξm, (see (17)). The conservative bounds forQv

can be calculated for arbitrary lower and upper bounds of
the CDFFi,ξ(x) of the i-th pseudo-rangeξi

F i,ξ(x) ≤ Fi,ξ(x) ≤ F i,ξ(x) ∀x ∈ R.

The following paired CDF overbounding for the error
vertical positioningQv = ẑ − z :

F
ξ̃
(x) = N

(
µ, σ2

Qv

)
andF

ξ̃
(x) = N

(
−µ, σ2

Qv

)
,

whereµ =
∑n

i=1 |a3,i|bi and σ2
Qv

=
∑m

i=1 a
2
3,iσ

2
i , will

be used in the rest of the paper. This means that the
instantaneous vertical integrity risk is upper bounded in
the following manner:

P (|ẑ − z| ≥ VAL ) ≤ 2Φ

(
−VAL − µ

σQv

)
(34)

7. CONSERVATIVE BOUNDS FOR THE
INTEGRITY RISKS PER A GIVEN PERIOD
OF TIME

7.1 Autoregressive first order model AR(1)

Experimental calculations show that the sequences
of pseudo-range errors{ξn,i}n≥1 are strongly auto-
correlated and that the time series model can be approxi-
mated by AR(1) [12]. Due to the fact that the positioning
errors x̂ − x, ŷ − y, and ẑ − z are represented as linear
combinations of the pseudo-range errorsξ1, . . . , ξm (see
(7)), the horizontal and vertical positioning errors are also
represented as an AR(1) process. It is assumed that the
vector of pseudo-range errors is represented as an AR(1)
process{ξn}n≥1

ξn = (1−λ)ξn−1 +λζn, ξn = (ξn,1, . . . , ξn,m)T , (35)

wheren = 1, 2, 3, . . . is the current number of time step
– GNSS epoch,0 < 1 − λ < 1 is the autoregressive
coefficient, and{ζn}n≥1 is the i.i.d. vector innovation
process. As it follows from (7), the vectors of horizontal
and vertical positioning errors are given byQh,n = Ahξn
andQv,n = Avξn, whereAh is a sub-matrix composed
of the first two rows of the matrixA (see (7)) andAv is
a sub-matrix composed of the third row of the matrixA
(see (7)). Hence,

Qh,n = (1 − λ)Qh,n−1 + λyh,n, (36)

Qv,n = (1 − λ)Qv,n−1 + λyv,n, (37)

where the i.i.d. vectors{yh,n}n≥1 (resp. variables
{yv,n}n≥1) obey a certain distributionFh,y (resp.Fv,y) ,
i.e., yh,n ∼ Fh,y (resp.yv,n ∼ Fv,y).

7.2 Conservative bounds for the vertical integrity risk
per a given period of time

The very first idea to calculate the probability that
the random walk is absorbed by boundaries−h and
h by solving integral equations is due to [13], [14].
A pedagogical introduction to the first-passage-problem
can be found in [15, Ch. 2]. The adaptation of general
equations to the case of AR(1) process can be found in
[16]. The recursive equation for the probability of the
eventNv = n is given by (see details in [17]) :

pn(u) =
1

λ

∫ h

−h

pn−1(z)fy

(
z − (1− λ)u

λ

)
dz, (38)

wheren = 2, 3, . . . , T , pn(u) = P(Nv = n|Qv,0 = u),
fy(x) is the PDF ofyn. The initial conditionp1(u) is
calculated in the following manner

p1(u)=P (|(1− λ)u − λy1| > h)

=1−Fy

(
h−(1−λ)u

λ

)
+Fy

(−h−(1−λ)u

λ

)
. (39)

Finally, the probability of the event{1 ≤ Nv ≤ T }
provided thatQv,0 = u is given by

P(1 ≤ Nv ≤ T |Qv,0 = u) =

T∑

n=1

pn(u). (40)

If the initial condition Qv,0 = u is a random variable,
we have to randomize the result in the following manner
(under assumption that the distribution of initial state is
known) :

P(1≤Nv≤T |u ∈ [−h, h])=

∫ h

−h
fQv,0

(x)
∑T

n=1pn(x)dx∫ h

−h
fQv,0

(x)dx
,

(41)
whereu ∼ FQv,0

, fQv,0
(x) is the PDF ofFQv,0

.
Assumption 1:Let us assume that the CDFFy(x) of the

innovation process{yn}n≥1 and the CDFFQv,0
(x) of the

initial stateQv,0 obey the following inequalityF y(x) ≤
Fy(x) ≤ F y(x) andFQv,0

(x) ≤ FQv,0
(x) ≤ FQv,0

(x)
for x ∈ R.

Lemma 1:Let us consider that Assumption 1 is sat-
isfied. Then the upper boundpn(u) for the probability
pn(u) is given by

pn(u) = pn−1(h)F y

(
h− (1− λ)u

λ

)

− pn−1(−h)F y

(−h− (1− λ)u

λ

)

−
∫ h

−h

F y

(
z − (1− λ)u

λ

)
I{p′

n−1
(z)≥0}p

′
n−1(z)dz

−
∫ h

−h

F y

(
z−(1−λ)u

λ

)
I{p′

n−1
(z)<0}p

′
n−1(z)dz, (42)

where n = 2, 3, . . . , T, I{A} =

{
1 if A is true
0 if A is false

is the indicator function of the eventA, p′n−1(z) =
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dpn−1(z)/dz and the upper bound for the probability
p1(u) is given by

p1(u)=1−Fy

(
h− (1 − λ)u

λ

)
+F y

(−h− (1− λ)u

λ

)
.

(43)
Proposition 2: Let us consider that Assumption 1

is satisfied. Then the upper bound for the verti-
cal integrity risk per a given period of timepr =
P (1 ≤ Nv ≤ T |u ∈ [−h, h]) is given by

pr ≤ 1

a

[
pT (h)FQv,0

(h)− pT (−h)FQv,0
(−h)

−
∫ h

−h

FQv,0
(x)I{p′

T
(x)≥0}p

′
T (x)dx

−
∫ h

−h

FQv,0
(x)I{p′

T
(x)<0}p

′
T (x)dx

]
, (44)

whereh = VAL, a = FQv,0
(h) − FQv,0

(−h), pT (x) =∑T
n=1 pn(x) andp′T (x) = dpT (x)/dx.

7.3 Conservative bounds for the horizontal integrity
risk per a given period of time

The extension of the scalar first-passage-problem to
the m-dimensional vector AR(1), defined by equations
(36), leads to the following recursive equation (for the
sake of simplicity, only two-dimensional case,m = 2, is
considered in this section, see extension tom ≥ 2 in [17])

pn(U)=
1

λ2

∫
· · ·
∫

‖Z‖2≤h

pn−1(Z)fy

(
Z − (1 − λ)U

λ

)
dZ,

(45)
wheren = 2, 3, . . . , T , pn(U) = P(Nh = n|Qh,0 = U),
f(X) is the PDF ofyn, X,U,Z ∈ R

2, dZ = dz1dz2.
The initial conditionp1(U) is calculated in the following
manner

p1(U) = P (‖(1− λ)U − λy1‖2 > h)

=
1

λ2

∫
· · ·
∫

‖Z‖2≥h

fy

(
Z − (1 − λ)U

λ

)
dZ. (46)

The probability of the event{1 ≤ Nh ≤ T } provided
that Qh,0 = U is given by previously defined equation
(40) and the probabilityP (1 ≤ Nh ≤ T |u ∈ [−h, h]) by
previously defined equation (41).

Assumption 2:Let us assume that the CDFFy(X) =
Fy,1(x1)Fy,2(x2) of the innovation process{yn}n≥1 and
the CDF FQh,0

(X) = FQh,0,1(x1)FQh,0,2(x2) of the
initial stateQh,0 obey the following inequalityF y,i(x) ≤
Fy,i(x) ≤ F y,i(x) and FQh,0,i

(x) ≤ FQh,0,i(x) ≤
FQ0,i(x) for x ∈ R, wherei = 1, 2.

Lemma 2:Let us consider that Assumption 2 is satis-
fied. Then the upper bound for the probabilitypn(U) is

given by Lemma 1, wherez is replaced withz1, u with
u2, and the functionpn−1(z) is replaced with the function

I(z1, u2)=

=pn−1

(
z1,
√
h2−z21

)
F y,2

(√
h2−z21 − (1−λ)u2

λ

)

−pn−1

(
z1,−

√
h2−z21

)
F y,2

(
−
√
h2−z21 − (1−λ)u2

λ

)

−
∫ √

h2−z2

1

−
√

h2−z2

1

F y,2

(
z2 − (1− λ)u2

λ

)
p+(z1, z2)dz2

−
∫ √

h2−z2

1

−
√

h2−z2

1

F y,2

(
z2 − (1− λ)u2

λ

)
p−(z1, z2)dz2,

for −h < z1 < h, I(−h, u2) = I(h, u2) = 0, n =
2, 3, . . . , T , p+(z1, z2) = I{p′

n−1
(z1,z2)≥0}p

′
n−1(z1, z2),

p−(z1, z2) = I{p′

n−1
(z1,z2)<0}p

′
n−1(z1, z2) and

p′n−1(z1, z2) =
∂pn−1(z1, z2)

∂z2
. The upper bound

p1(U) for the probabilityp1(U) is given by

p1(U)=1 +

∫ h

−h

F y,1

(
z1 − (1− λ)u1

λ

)
I+(z1, u2)dz1

+

∫ h

−h

F y,1

(
z1 − (1− λ)u1

λ

)
I−(z1, u2)dz1,

where I+(z1, u2) = I{I ′

1
(z1,u2)≥0}I

′
1(z1, u2),

I−(z1, u2) = I{I′

1
(z1,u2)<0}I

′
1(z1, u2)

I1(z1, u2) = max

{
F y,2

(√
h2 − z21 − (1 − λ)u2

λ

)

−F y,2

(
−
√
h2 − z21 − (1− λ)u2

λ

)
, 0

}

andI ′1(z1, u2) =
∂I1(z1, u2)

∂z1
.

Proposition 3: Let us consider that Assumption 2
is satisfied. Then the upper bound for the horizon-
tal integrity risk per a given period of timepr =
P (1 ≤ Nh ≤ T |‖U‖2 < h) is given by

pr ≤ 1

a

[
−
∫ h

−h

FQ0,1(x1)I{I′

0
(x1)≥0}I

′
0(x1)dx1

−
∫ h

−h

FQ0,1(x1)I{I′

0
(x1)<0}I

′
0(x1)dx1

]
,

whereh = HAL, I0(−h) = I0(h) = 0 and

I0(x1)=pT

(
x1,
√
h2 − x2

1

)
FQ0,2

(√
h2 − x2

1

)

− pT

(
x1,−

√
h2−x2

1

)
FQ0,2

(
−
√
h2−x2

1

)

−
∫ √

h2−x2

1

−
√

h2−x2

1

FQ0,2(x2)I{p′

T
(x1,x2)≥0}p

′
T (x1, x2)dx2

−
∫ √

h2−x2

1

−
√

h2−x2

1

FQ0,2(x2)I{p′

T
(x1,x2)<0}p

′
T (x1, x2)dx2,
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for −h < x1 < h, I ′0(x1) =
dI ′0(x1)

dx1
, pT (X) =

∑T
n=1 pn(X), p′T (x1, x2) =

∂pT (x1, x2)

∂x2
. The constant

a is given by

a = −
∫ h

−h

FQ0,1(x1)I{I′(x1)≥0}I
′(x1)dx1

−
∫ h

−h

FQ0,1(x1)I{I′(x1)<0}I
′(x1)dx1,

I ′(x1) =
dI(x1)

dx1
and I(x1) =

max

{
FQ0,2

(√
h2 − x2

1

)
− FQ0,2

(
−
√
h2 − x2

1

)
, 0

}
.

As a final remark, it should be noted that the above
mentioned equations can produce aberrant results for an
unusual choice of relations between the CDF overbounds
(see Assumptions 1 and 2) and the parametersλ andh.

7.4 Using the“excess-mass PDF overbounding”

Sometimes it is necessary to use the bounds for the PDF
of Q0 and/or for the PDF ofyn. Such kind of bounds are
usually used to overbound the distributions with excess-
mass functions (see [8]).

Conservative bounds for both horizontal and vertical
integrity risk per a given period of time are considered
now. For this reason, it is assumed that the dimension of
the vector AR(1) process ism ≥ 1.

Assumption 3:Let us assume that the PDFfy(X) of
the innovation process{yn}n≥1 and the PDFfQ0

(X) of
the initial stateQ0 obey the following inequality

fy(X) ≤ fy(X) and fQ0
(X) ≤ fQ0

(X) for X ∈ R
m.

Let us assume that Assumption 3 is satisfied. Then the
above-mentioned recursive equations have to be replaced
with the following inequalities

pn(U)≤ 1

λm

∫
· · ·
∫

‖Z‖2≤h

pn−1(Z)fy

(
Z − (1− λ)U

λ

)
dZ,

(47)
n = 2, 3, . . . , T , and the initial conditionp1(U) is also
upper bounded in the following manner

p1(U) ≤ 1

λm

∫
· · ·
∫

‖Z‖2≥h

fy

(
Z − (1− λ)U

λ

)
dZ. (48)

The thresholdh is equal to HAL or VAL. This method of
the risk overbounding can lead to very conservative results
due to the recursive character of the above-mentioned
equations. This problem can be especially important for
large values ofT . Hence, a special attention should
be paid to the choice of the upper boundsfy(X) and
fQ0

(X).

8. NUMERICAL EXAMPLES

The first example is devoted to the conservative bounds
for the horizontal/vertical instantaneous integrity risk. Let
us consider the following scenario : HAL= 40 m,
VAL = 35 m, the GPS constellation is simulated with
the YUMA almanac, week0593 (Jan. 2011), available
at http://celestrak.com/. It is assumed that the diagonal
variance-covariance matrix of the pseudo-range noise
is Σ = diag {4, . . . , 4}m2 and the pseudo-range bi-
asesbi are bounded bybi = 3 m, i = 1, . . . ,m.
The geographic coordinates of the user are(φ, λ, h) =
(48◦16′7′′, 4◦3′57′′, 178m) and the elevation mask angle
is set to 7◦. The major radius of the horizontal error
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Fig. 8. The major radius of the horizontal error ellipse
√

λmax and the
SD σQv

of the vertical errorQv as functions of the elapsed time.

ellipse
√
λmax and the standard deviation (SD)σQv

of
the vertical errorQv as functions of the elapsed time are
shown in Figure 8. The conservative worst case horizontal
bias ‖B∗

h‖2, the worst case horizontal bias
∥∥Bh

∥∥
2

and
the worst case vertical biasµ as functions of the elapsed
time are shown in Figure 9. Finally, the conservative
bounds for the horizontal/vertical instantaneous integrity
risk are presented in Figure 10. The conservative bound
for the horizontal instantaneous integrity risk is calculated
by using (32) with the inflation coefficientci = 3,
i = 1, . . . ,m. The conservative bound for the vertical
instantaneous integrity risk is calculated by using (34).

The second example is devoted to Proposition 2 with
the paired CDF overbounding ofyn andQ0. A special
method of numerical integration based on the Gaussian
quadrature and the 5-point numerical derivative has been
designed to calculate the conservative bounds for the
integrity risk per a given period of time. Let us consider
the following scenario : VAL= 25 m, T = 150 sec.
It is assumed thatσ2

Qv
= VarQv,n = 12 m2 and that

Assumption 1 is satisfied with the following bounds for
the CDFFy(x) of the innovation process{yn}n≥1 and
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Fig. 10. The conservative bounds for the horizontal/vertical instanta-
neous integrity risk.

the CDFFQv,0
(x) of the initial stateQv,0 :

F y(x) = N
(
µ, σ2

y

)
≤ Fy(x) ≤ F y(x) = N

(
−µ, σ2

y

)

and

FQv,0
(x)=N (µ, σ2

Qv
)≤FQv,0

(x)≤FQv,0
(x)=N (−µ, σ2

Qv
),

whereµ = 8 m, σ2
y = 1−(1−λ)2

λ2 σ2
Qv

and1− λ ∈ [0, 0.9].
The stopping boundaryh in (12) is set to VAL.

Let us now compare the vertical integrity risk
P (1 ≤ Nv ≤ T |u ∈ [−h, h]) defined by equation (41) for
the Gaussian innovation process and the initial state with
the “worst case expectation”, i.e.,µ = 8 m, with the upper
bound of this risk given by Proposition 2 for unknown
distributions of the innovation process and initial state.
The risk and its conservative overbound as functions of
1 − λ are presented in Figure 11. The risk that the
absorption occurs at one of the barriers−h = −VAL
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Fig. 11. The conservative bound of the vertical integrity risk per a given
period of time and the vertical integrity risk calculated for the worst case
(w. c.) Gaussian AR(1) process.

or h = VAL at or before the150-th step for the known
Gaussian AR(1) process withµ = 8 m is shown in dashed
line and the its overbound for the AR(1) process with
unknown distributions is shown in solid line in Figure 11.
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Fig. 12. The conservative bound of the vertical integrity risk per a
given period of time by using the excess-mass PDF overbounding and
the vertical integrity risk calculated for the Gaussian AR(1) process.

The third example is devoted to the usage of the
excess-mass PDF overbounding ofyn. Let us consider
the following scenario : VAL= 25 m, T = 50 sec. The
scalar AR(1) process is given by equation (37) with the
autoregressive coefficient1− λ ∈ [0, 0.99]. It is assumed
that Assumption 3 is satisfied with the following excess-
mass overbound for the PDFfy(x) of the innovation

International Technical Symposium on Navigation and Timing (ITSNT) 2017
14-17 Nov 2017
ENAC, Toulouse, France



12

process{yn}n≥1 :

fy(x) ≤ fy(x) = c · f(x), (49)

where f(x) is the PDF of the Gaussian distribution

N
(
µ, 1−(1−λ)2

λ2 σ2
Qv

)
, µ = 10 m, σ2

Qv
= VarQv,n =

12 m2 and c = 1.1. The stopping boundaryh in (12) is
set to VAL. The comparison between the Gaussian AR(1)
process and the AR(1) process with the innovation PDF
overbounded with the excess-mass function is presented
in Figures 12. It follows from Figures 11 and 12 that
the conservative bound for the vertical integrity risk per
a given period of time obtained by using the excess-mass
PDF overbounding is more conservative that the same
bound obtained by using the paired CDF overbounding.

9. CONCLUSION

This paper addresses the problem of horizontal/vertical
integrity risk overbounding. Two new methods of the in-
stantaneous (i.e., per one GNSS measurement) horizontal
integrity risk overbounding are proposed. These methods
provide the users with a conservative estimation of the
probability that the horizontal error is greater than a
prescribed horizontal protection level. The calculation of
conservative bounds for the horizontal/vertical integrity
risk per a given period of time is reduced to the first-
passage-problem for the autoregressive process. A nu-
merical method based on the integral equations has been
proposed to find a conservative bound for the probability
that the autoregressive process absorption at the barrier
occurs at or before a given period of time.

The theoretical findings proposed in the paper represent
a mathematical background for the vertical and horizontal
integrity risk overbounding in exact terms following the
requirements of the MOPS for GPS/Galileo.
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