Resilient Positioning, Navigation, and Timing

International Technical Symposium on Navigation and Timing
November 2018
Resiliency – PNT Risk Management

From Presidential Policy Directive (PPD-21): The term "resilience" means the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and recover from deliberate attacks, accidents, or naturally occurring threats or incidents.

https://www.dhs.gov/what-security-and-resilience

<table>
<thead>
<tr>
<th>PPD-21 RM Examples</th>
<th>PNT Specific RM Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing a business continuity plan</td>
<td>Operations contingency planning – practices and procedures for GPS disruptions</td>
</tr>
<tr>
<td>Having a generator for back-up power</td>
<td>Alternate PVT sources – Clocks, inertial, GNSS, vision-aided, communication systems, RADAR, compass, etc.</td>
</tr>
<tr>
<td>Using building materials that are more durable</td>
<td>Antennas, protection algorithms, security engineering (IA), Cyber protections, adaptable system architectures</td>
</tr>
</tbody>
</table>

Courtesy of DHS
GPS/GNSS Challenged Environments

- Ionospheric Disturbances
- Underwater/Indoors
- Urban Canyons
- High Accuracy with Integrity
- Timely Notification of Misleading Information
- Signal Interference (Jamming/Spoofing)
- Inaccurate/Out-of-Date Maps
Disruptions to GPS/GNSS Service

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unintentional vs. Intentional</td>
<td>Is the disruption caused by a piece of space debris that disabled a GPS satellite or is it due to an intentional act by a disgruntled employee or terrorist?</td>
</tr>
<tr>
<td>Predictable vs. Unpredictable</td>
<td>Was the disruption due to an anticipated increase in solar flare activity or the sudden activation of a jamming device?</td>
</tr>
<tr>
<td>Environmental vs. Manmade</td>
<td>Is the disruption due to increased solar weather activity or due to an improperly configured radio transmitter operating in an adjacent frequency band?</td>
</tr>
<tr>
<td>Crude vs. Sophisticated</td>
<td>Is the disruption caused by a $50 GPS jammer purchased on-line, or by a hacker precisely manipulating a GPS signal to deceive shipping or highway traffic?</td>
</tr>
<tr>
<td>Local vs. Widespread</td>
<td>Is the disruption a targeted spoofing attack against a single cargo terminal, or does it cover a large geographic area (e.g., due to a significant solar weather phenomenon)?</td>
</tr>
</tbody>
</table>

Source: Volpe Center
Disruptions in GPS/GNSS Service (Cont’d)

<table>
<thead>
<tr>
<th>Spectrum Encroachment</th>
<th>Solar Weather</th>
<th>GPS Infrastructure</th>
<th>Jamming</th>
<th>Spoofing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unintentional or Intentional</td>
<td>UNINTENTIONAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictable or Unpredictable</td>
<td>PREDICTABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental or Manmade</td>
<td>ENVIRONMENTAL</td>
<td></td>
<td>MANMADE</td>
<td></td>
</tr>
<tr>
<td>Crude or Sophisticated</td>
<td>CRUDE</td>
<td></td>
<td>SOPHISTICATED</td>
<td></td>
</tr>
<tr>
<td>Local or Widespread</td>
<td>LOCAL</td>
<td></td>
<td>LOCAL</td>
<td></td>
</tr>
</tbody>
</table>

Source: Volpe Center
Advanced Navigation and Timing Strategy for Robustness and Resilience

• Transition from GPS User Equipment to Assured Navigation and Timing (NT) User Equipment

• Implement Satnav User Equipment Competency

• Enhance and Develop Satnav Infrastructure

• Recognize and Remove Threats

• Take Complementary Actions to Address Policies, Processes, Legislation, etc.
National PNT Architecture Recommendations

Vision

- Critical Infrastructure & Time
- Protect Strategic Advantage
- High Accuracy with Integrity
- Augmentation Transition Opportunities
- PNT Signal Monitoring & Dissemination
- GPS – An Architecture Cornerstone

Strategy

- US Leadership in Global PNT
- The US can Best Achieve Efficiency and Effectiveness through a Greater Common Denominator Approach

Vectors

- Synergy of PNT & Communications
- Cooperative Organizational Structures
- Multiple Phenomenologies
- Interchangeable Solutions
- Interchangeability with Foreign PNT Sources
- Standards & Reference Frames
- Info Exchange, Assurance & Protection
- Grids & Coordinate Systems
- PNT Pseudolites & Beacons
- US Military Use of Non-Military Signals
- Civil Use of Foreign PNT
- Integrated User Equipment
- Evolution of PNT Capabilities
- PNT Signals Monitoring & Dissemination

Recommendations

- Evolution of PNT Capabilities
- Critical Infrastructure & Time
- US Military Use of Non-Military Signals
- Civil Use of Foreign PNT
- Integrated User Equipment
- Multiple Phenomenologies
- Synergy of PNT & Communications
- Cooperative Organizational Structures
- National PNT Coordination Process
- Phenomenology & Application Champions
- Modeling & Simulation Framework
Future of Positioning, Navigation, and Timing

Environment
- Weather
- Technological

Geo-political
- Fiscal

ENABLERS & INFRASTRUCTURE
- Space Comm & Nav Arch
- GPS
- SATCOM
- Aiding Data & Ranging Signals

Synergy of PNT and Communications
- Ground Based Radio Freq
- Evolved GNSS Augmentation

Multiple Phenomenologies
- Star Trackers
- Cell Phone Networks
- Foreign Regional Nav

Interchangeable Solutions
- Foreign GNSS

Enabling Technology
- Pseudolites & Beacons
- Geospatial Data
- PNT signal monitoring
- User Interface Orgs

Autonomous
- Clocks
- Sensors & Sensor Aiding
- Inertial

Cooperative Organizational Structures
- Pseudolites & Beacons

Standards & Reference Frames
- Star Catalogs
- Launch Modeling

Science & Technology
- USNO
- NIST
- NGA

Electro Optical Info.
- Industrial Base Policies
- Testing

Mapping/Charting/Geodesy
- Laser Ranging Network

Cryptography
- Modeling/Imaging/Geodesy

1) Identify PNT requirements to backup and complement PNT capabilities dependent on GPS for national security and critical infrastructure;
2) Conduct an analysis of appropriate technology options;
3) Conduct an analysis of the viability of a public-private partnership to establish a complementary PNT system;
4) Conduct an analysis of the viability of service level agreements to operate a complementary PNT system;
5) Determine the estimated costs, schedule, and system level technical considerations, including end user equipment and integration considerations; and
6) Identify appropriate resourcing for each such Department in accordance with the respective requirements of the Department, including domestic or international requirements.

1) Jointly develop a plan for carrying out a backup GPS capability demonstration for critical infrastructure sectors

2) Subject to appropriations, carry out the GPS backup demonstration within 18 months (June 2019)

$10M appropriated in DoD’s budget to carry out GPS backup demonstration
- Plans underway by DHS and DOT to conduct demonstration
In 2016 the Volpe Center conducted an inventory of Global Positioning System Dependencies in the Transportation Sector, Best Practices for Improved Robustness of GPS Devices, and Potential Alternative Solutions for Positioning, Navigation and Timing

https://rosap.ntl.bts.gov/view/dot/12386
SEC. 514. BACKUP NATIONAL TIMING SYSTEM.
(a) SHORT TITLE.—This section may be cited as the “National Timing Resilience and Security Act of 2018”.
(b) IN GENERAL.—Chapter 30 of title 49, United States Code, is amended by adding at the end the following:

“§ 312. Alternative timing system

“(a) IN GENERAL.—Subject to the availability of appropriations, the Secretary of Transportation shall provide for the establishment, sustainment, and operation of a land-based, resilient, and reliable alternative timing system—

“(1) to reduce critical dependencies and provide a complement to and backup for the timing component of the Global Positioning System (referred to in this section as ‘GPS’); and

“(2) to ensure the availability of uncorrupted and non-degraded timing signals for military and civilian users in the event that GPS timing signals are corrupted, degraded, unreliable, or otherwise unavailable.”
Backup GPS

- The measure would direct the Transportation Department (subject to appropriations) to establish a backup system for the timing component of GPS that would begin operation within two years of the measure’s enactment. It would have to be designed to operate for at least 20 years and be available for government use at no net cost to the federal government within 10 years of initiating operation.

- The system would be developed by a competitively selected nonfederal entity. The entity could sell timing and other services to third parties, but would have to share 25 percent of the proceeds with the Transportation Department for at least 10 years.

- The Coast Guard would transfer its Long-Range Navigation System (LORAN) infrastructure to the Transportation Department for use with the system as needed.
“The vital need for efficient methods of navigation is as universal and ancient as the requirement to travel. Each era of navigation history has necessarily been marked by the particular situation of mankind at the time, including use of the available tools.”

“At issue on a continuing basis are questions of geographic coverage, the particular types of radionavigation systems which are needed and who must bear the responsibility and expense of providing the signals.”