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ABSTRACT  

In GNSS receivers, conventional scalar tracking 

algorithms allows to synchronize incoming signals with 

their locally generated replicas in terms of code delay, 

Doppler frequency and carrier phase. In that way, basic 

DLL, FLL and PLL are used. The signals tracking 

depends upon their waveforms that impact the 

corresponding tracking channel setting, in particular the 

choice of tracking loops characteristics: correlators, 

discriminators, filter orders and bandwidths. 

As a consequence, to improve the receiver robustness, it 

is of interest to study new signals processing strategy. 

Amongst the potential receiversô architectures, it is fed by 

the authors of the GNSS domain as an important task to 

investigate vector Kalman-based tracking architectures. 

In addition, vector tracking has many advantages over 

scalar tracking loops. The most commonly cited 

advantage is an increased immunity to interferences [4] 

[8]. The minimum carrier to noise power density ratio at 

which the receiver can operate is lowered by processing 

the signals in aggregate instead of separately. 

In this paper, Kalman-based FPLL (Frequency and Phase 

Locked Loop) tracking loop models are discussed and 

their performances are assessed. The algorithms described 

are used to estimate jointly carrier phase and frequency 

tracking errors by one Kalman filter. Thus, the state 

vector is composed of tracking errors and the loopsô 

discriminators outputs are considered as measurements. 

Two models are presented. The main difference between 

the two models concerns the definition of the filter gain 

that can be fixed or calculated according to 

measurements. Computing a variable gain requires 

tracking loop bandwidths knowledge, dynamics and 

measurement noise settings.  This allows the filter to be 

robust against the receiver dynamics. In comparison, a 

fixed gain depends only on tracking loop bandwidths but 

its computation must be as optimal as possible because it 

weights all measurements in the same way. 

This paper details models implementation: gain 

computation, choices of measurement matrix and how to 

estimate measurements. Inspired by two existing models 

(fixed gain and variable gain) that estimate carrier phase 

tracking errors and frequencies, the design of new models 

implies an adaptation of measurement matrix and gain. In 

various conditions (occurrence of feared events, filters 

settingé), the filtersô estimations are discussed. Finally, 

vector tracking is discussed while including Kalman 
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filter-based algorithms. Furthermore, to complete the 

analysis, feared event detection is discussed. 

1 INTRODUCTION  

With the development of new and existing navigation 

systems (GPS, GALILEO, GLONASS, QZSS ...), the 

variety of radio navigation signals increases greatly 

involving 8 frequency bands and about 20 different 

signals.  

Additionally, the number of new satellites with various 

waveforms has increased, multiplying architecture 

possibilities for multi-frequency receivers.  

Moreover, the architecture of receivers has to be able to 

adapt to many growing GNSS markets: land-based, mass 

market, transports, civil aviation, military and space 

applicationsé Even better, receivers which are flexible 

for several applications can be targeted. Therefore, 

software receivers which can be updated are the future of 

localization and navigation. 

Thus, the architecture of GNSS receivers must be defined 

as a scalable system, taking into account the wide range 

of existing and expected signals and depending on the 

application case. 

When each useful signal is acquired, basic DLL, PLL and 

FLL enable the synchronization between the incoming 

signal and its local replica in terms of code delay, Doppler 

frequency and carrier phase. Those tracking loops depend 

on tracking loops characteristics such as the filter order 

and the bandwidth. As FLL and PLL are mandatory to 

perform frequency and phase synchronization, a lack of 

robustness from the beginning of the synchronization can 

impact the next steps of the tracking process, and then the 

positioning process.  

Therefore, to improve robustness, it is worth studying 

new architectures of the tracking process. 

For the sake of robustness, the tracking architecture 

presented in this paper relies on a FPLL (Frequency and 

Phase Locked Loop) using a Kalman filter coupled with a 

state machine. A Kalman filter is a known way to replace 

a conventional tracking filter to provide better tracking 

error estimation.  

To complete the architecture proposed, the idea is to 

extend the FPLL to all channels and to vectorise it, in 

order to take benefit of channels correlations.  

By using a state machine to select settings according to 

the receiver environment, the number of Kalman filters 

used is limited and the receiver architecture is adaptive. 

 

This paper highlights the following main contributions: 

¶ Selection and setting of two FPLL algorithms 

using Kalman filter: jointly estimation of 

Doppler frequency and carrier phase errors  by a 

Kalman filter, 

¶ Identification of mostly encountered feared 

events and mapping with applications (not 

exhaustive), 

¶ Discussion on  robustness of proposed 

algorithms against feared events, 

¶ Presentation of improvements to perform the 

tracking process under harsh environments, 

¶ Preliminary assessment and discussion about 

patented algorithms to perform signals and 

feared events detection in noisy environments, 

¶ Discussion on vector tracking and detection of 

feared events. 

The paper is organized as follows. After a review of 

conventional tracking architecture, its differences with a 

Kalman-based tracking, new algorithms with their 

hypotheses are presented. Then, performances and 

robustness of those algorithms in harsh environments are 

analyzed. Finally, a discussion is led on how to integrate 

these algorithms in the receiver architecture to provide 

feared events detection. 

2 FOCUS ON RECEIVERS 

SIGNAL TRACKING  

ARCHITECTURE  

It is necessary to identify promising GNSS receiversô 

architectures for each application. The environment of the 

receiversô antenna will depend upon the applications and 

the feared events must be mapped with each kind of 

application. Finally, promising receiversô algorithms must 

be assessed in details to know if:  

¶ They are compliant with performances targeted 

for each application, 

¶ They are robust against feared events, 

¶ Algorithms can be embedded in targeted 

HW/SW platforms. 

 

In the following, the focus is made on the user segment 

and in particular on the receiversô architecture and its 

capability to process GNSS signals in various 

environments (and in particular in harsh environments). 

This part is a state of the art about existing receiversô 

tracking architectures: conventional tracking, Kalman-

based tracking and vector tracking.  
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Figure 1 illustrates the signals processing for each 

channel, including the acquisition and tracking processes 

until the data demodulation.  

 

Figure 1: Acquisition, tracking and demodulation 

steps per channel 

2.1 Conventional tracking architecture 

Tracking process enables to synchronize the incoming 

signal and its locally generated replica, and monitors the 

progress of code delay, Doppler frequency and carrier 

phase [1].  

  As for the acquisition process, tracking can process only 

one channel at a time, but several tracking processes are 

run in parallel. Some channels could be in acquisition 

mode
1
 whereas others would already be in tracking 

mode
2
. The high level conventional tracking loop 

structure is described in the Figure 2. 

 

 

 

 

The correlator periodically achieves the correlation 

product between the input signal and the locally generated 

replica. The replica is generated through the NCO 

(Numerically Controlled Oscillator).  

At the correlator output (of code, phase or frequency), the 

signal is split into a real part (channel I) and an imaginary 

                                                           
1
 Acquisition mode: a state of one channel at a given time 

in signal processing. 
2
 Tracking mode: a state of one channel at a given time. It 

follows the acquisition mode in signal processing. 

part (channel Q). Here, only the real signal is processed 

because it deals with a GPS L1 C/A signal. 

The integrator used at the correlator output is a low-pass 

filter with integration timeὝ. 

Thus, in case of a complex signal, correlatorsô outputs 

after integration can be modelled as following: 

Ὅὸ
ὃ

ς
ὨὸίὭὲὧ“‐ Ὑ ‐ ÃÏÓ‐ ὲ ὸ (Eq 1) 

ὗὸ
ὃ

ς
ίὭὲὧ“‐ Ὑ ‐ ÓÉÎ‐ ὲ ὸ (Eq 2) 

Where 

¶ A is the input signal amplitude, 

¶ d(t) is the modulation of the navigation message,  

¶ Ὑ is the code autocorrelation,  

¶ ‐ is the signal Doppler frequency error, 

¶ ‐ is the signal code delay error, 

¶ ‐ is the signal carrier phase error, 

¶ ὲ ὸ and ὲ ὸ are the additive and uncorrelated 

white Gaussian noises. 

In this paper, the focus is made on the PLL convergence, 

in particular, the goal is to be able to demodulate the 

navigation data (d(t)) while:  

Ὅὸ
ὃ

ς
ὨὸίὭὲὧ“‐ Ὑ ‐ ÃÏÓ‐ ὲ ὸ

ᴼ
ựự Ὅὸ

ὃ

ς
Ὠὸ ὲ ὸ 

(Eq 3) 

ὗὸ
ὃ

ς
ίὭὲὧ“‐ Ὑ ‐ ÓÉÎ‐ ὲ ὸ

ᴼ
ựự ὗὸ ὲ ὸ 

(Eq 4) 

The discriminator is used to extract the correlation 

product error in order to compute synchronization errors 

of code, phase and frequency.  

Finally, the filter enables to face side effects of signal 

dynamics, mainly caused by satellite antenna and receiver 

relative dynamics. This bandpass loop filter is then 

characterised by its bandwidth and order (order 1: speed; 

order 2: accelerations; order 3: jerksé). The number of 

gains of a conventional loop filter corresponds to the 

tracking loop order. For an order 3 PLL [2]: 

ὑ
φπ

ςσ
ὄὝ (Eq 5) 

ὑ
τ

ω
ὑ  (Eq 6) 

ὑ
ς

ςχ
ὑ  (Eq 7) 

 

In conventional tracking loops, each operation in each 

channel is independent. Pseudoranges and pseudoranges 

rates are computed separately, by channel. Itôs only in the 

Figure 2: Conventional tracking loop architecture 

Channels 1..N 
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navigation filter that those measures are combined to 

provide the navigation solution. 

This type of tracking architecture is widespread in 

receivers. Nevertheless, conventional tracking presents 

some drawbacks. Although it gives correct navigation 

solutions in normal conditions (i.e. without considering 

feared events), it is well-known that conventional tracking 

process is less performant in harsh environments. Loss of 

positioning solutions or failures in code/carrier tracking is 

common. Indeed, weak signals or significant signal power 

drops impact the correlation process. Then, the navigation 

process is affected by lack of accuracy of estimated 

pseudoranges [3] [4]. Moreover, it allows to provide as 

many pseudoranges as available channels. [5]. 

As it is explained in the next part of this paper, several 

parameters, such as discriminator type, filter order and 

loop bandwidth, have an impact on the signal tracking 

behaviour. 

A FLL is more robust than a PLL since it does not control 

the exact value of the phase of the local carrier, however 

this loop will not allow the navigation message 

demodulation. Indeed, it is necessary to minimize the 

carrier phase error (convergence towards zero) to be able 

to demodulate navigation messages on a data channel 

(considering code synchronization is made). 

The FPLL can also be used since it combines the 

advantages of both PLL and FLL. This loop filter uses 

two discriminator inputs for frequency and carrier phase 

errors. This loop is more robust than a conventional PLL. 

2.2 Kalman-based tracking architecture 

 

The Kalman filter based tracking loop consists in 

replacing the conventional loop filter by a Kalman loop 

filter. This architecture is represented in the Figure 3. 

 

 
Figure 3: Kalman-based tracking loop architecture 

One of the Kalman-based tracking advantages is the 

weighting of the quality of predictions compared to the 

calculation, before updating each tracking occurrence.  

In theory, the Kalman-based algorithm provides the 

optimal gain. Thus, this tracking architecture is more 

robust than the conventional one: 

¶ To weak signals because the Kalman filter adapts 

the filter bandwidth to the noise level [6]. The 

Kalman gain provides an adaptive bandwidth 

filtering. In particular, this avoids using long 

integration time and enables improving the 

sensitivity of tracking. Indeed, lock detectors 

allow declaring the loss of lock of the local 

replica to the input signal, at a low C/N0. 

¶ To scintillations because it optimize 

automatically the loop filter minimizing the 

phase mean square error. In that fact, a Kalman-

based tracking provides better performances than 

a conventional PLL [7]. 

The main problem of a Kalman-based tracking loop 

relates to the settings of noise matrix used to compute the 

gain. Indeed, performances depend on the use of a correct 

state space dynamic model and on the monitoring of the 

actual measurement noise [7]. 

 

Generally, the Kalman filter gain is variable, it adapts to 

measurements and particularly to the C/N0 level. But the 

Kalman filter gain can be fixed and the weighting is done 

by a command helping the filter updating according to 

measurements. 

  

The Table 1 contains two Kalman-based tracking 

algorithms implemented at the PLL and FLL 

discriminators outputs that are considered as 

measurements. These algorithms estimate only phase 

errors by using estimated Doppler frequencies. The first 

algorithm presents a constant Kalman filter gain and uses 

an updating command whereas the second has a variable 

Kalman filter gain. 
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Algorithm ñKF_fixed_gainò[3] ñKF_variable_gainò 

Filter gain 
Fixed gain [3x1] 

Depending on ὄ  

Variable gain [2x2] 

Depending on ὄ , 

ὄ and noise 

matrix 

State vector ὢ

Ў•
Ὢ
‌

 ὢ
Ў•
Ὢ

 

Measurement 

vector 
ὣ

‐
‐  ὣ

‐
‐  

State 

transition 

matrix  

‰
ρ ὝὩὝὩȾς
π ρ ὝὩ
π π ρ

 ‰
ρ ὝὩ
π ρ

 

Measurement 

matrix  

Ὄ
ρ ὝὩȾς ὝὩȾς 

Ὄ
ρ π
π ρ

 

Command Ўό ὝὩzὔὅὕͅὖὒὒ / 

A priori state 

estimation 

ὢȿ
‰ ὢz ȿ Ўό 

ὢȿ
‰ ὢz ȿ  

Measurement 

estimation 
ὣ Ὄὢȿ

ρ

ς
Ўό ὣ Ὄὢȿ  

Innovation ὣ ὣ ὣ ὣ 

State 

estimation 

ὢȿ 
ὢȿ
ὑὭὲὲέὺὥὸὭέὲ
ὥάὦὭὫόὭὸώ 

ὢȿ
ὢȿ ὑ

ὭzὲὲέὺὥὸὭέὲ 

Table 1: Description of two Kalman-based tracking 

algorithms for carrier phase errors estimation 

2.3 FLL -aided PLL tracking architecture 

The FLL-aided PLL tracking architecture is a way to 

optimize the transition from the FLL loop to the PLL loop 

in case of dynamics. Indeed, due to the Doppler effect, 

frequency evolves quickly and the transition from the 

FLL loop to the PLL loop has to follow these frequency 

evolutions so that the carrier generator and the frequency 

synthesizer jointly work. In case of a FLL-aided PLL 

tracking, the FLL loop absorbs frequency tracking errors 

that allows a faster carrier phase synchronization. This 

architecture is presented on the  

Figure 4. 

 

 
 

Figure 4: FLL -aided PLL tracking loop architecture 

2.4 Vector tracking architecture 

A vector tracking architecture is defined as the processing 

of all channels with one loop for both tracking and 

navigation [8]. This architecture combines tracking and 

navigation processes. A Kalman filter is used at 

navigation level to estimate both tracking errors and 

position. It deals with an extended Kalman filter. 

 

Three kinds of vector tracking are mainly used: Vector 

Frequency Lock Loop (VFLL), Vector Delay Lock Loop 

(VDLL)  and Vector Delay and Frequency Lock Loop 

(VDFLL).  

 

In a Vector Frequency Lock Loop (VFLL), the frequency 

discriminator output and range-rate measurements are 

used. The velocity navigation states are used in an 

Extended Kalman Filter. The Figure 5 illustrates the 

architecture of VFLL tracking. 

 

 

 

Figure 5: Vector Frequency Lock Loop (VFLL) 

architecture 

A VFLL may be used to achieve robust frequency 

tracking. The carrier phase tracking may be aided thanks 

to the VFLL outputs. The robustness of vector frequency 

tracking that exploits cross-channel aiding combined with 

the accuracy of the PLL carrier phase tracking is of 

interest for various applications in harsh environments. 

This architecture implies the outputs from the VFLL and 

PLL discriminators and filters are inputs of the carrier 

NCO. In this way, the PLL tracks the residual carrier error 

Channels 1..N 

Channels 1..N 
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whereas the VFLL tracks the dynamics from all satellites 

signals. 

 

In case of a Vector Delay Lock Loop, the architecture is 

the same with the use of code discriminators outputs and 

pseudo range measurements instead of frequency 

discriminators outputs and range-rate measurements. A 

VDLL tracking ensures robustness to low C/N0 ratios and 

interferences [4]. 

 

A VDFLL architecture is a combination of both previous 

architectures VFLL and VDLL to improve robustness in 

harsh environments. More particularly, this architecture 

provides better performances, in terms of tracking 

efficiency and position estimation, than a conventional 

tracking in case of dynamics and few visible satellites [4]. 

 

Therefore, more generally, vector tracking presents 

various advantages compared to conventional tracking 

[9]. Indeed, by correlation of channels, it allows to 

estimate 4 unknowns (3 positions and a clock bias) thanks 

to N measurements while conventional tracking estimates 

only N pseudoranges with N satellitesô signals [5]. Then, 

vector tracking provides better performances. It mainly 

enables a better reliability to face interferences and better 

detection ability. Vector tracking is more robust than 

conventional one in following points: 

¶ The minimum signal-to-noise ratio under which 

the receiver can operate correctly is lower when 

signals are processed together rather than 

separately [8]. 

¶ In addition to this reliability to face 

interferences, vectorisation enables the reliability 

of the tracking when facing cycle slips and 

receiverôs dynamics. 

¶ Cross-correlation allows to bridge signal outages 

of some satellites and to reacquire them 

immediately when they reappear [8]. 

¶ Vector tracking is also used to reduce multipath 

effects. Indeed, thanks to channels comparison, 

NLOS (Non Line Of Sight) signals are detected 

[4]. 

However, vectorising the tracking has some defects. The 

main issue is that an error on one channel spreads over all 

other channels. A problem on one channel can actually 

impact the others and lead to the receiver instability or to 

the desynchronization with all the satellites. 

Furthermore, vectorised tracking is complex to implement 

[9] and has a longer launching process than a scalar one. 

Finally, VFLL, VDLL and VDFLL do not allow to track 

carrier phase. These architectures require a conventional 

PLL in parallel. A solution can be to use a serial PLL 

connected to VDFLL architecture so that the PLL of each 

channel benefits from the frequency estimation by the 

VDFLL structure. Here, an anomaly in PLL tracking does 

not affect the VDFLL tracking [3]. 

This study is done to analyse another solution to improve 

tracking robustness by taking into account carrier phase 

estimation in order to accelerate navigation message 

demodulation. Contrary to vector tracking, it does not 

consider navigation process but just tracking process. 

3 PROPOSED FREQUENCY AND 

CARRIER PHASE (FPLL)  

TRACKING  ALGORITHMS 

USING KALMAN FILTER  

3.1 Introduction  

It deals with the implementation of a FPLL tracking using 

a Kalman filter on only one channel. It means carrier 

phase and frequency tracking errors are jointly estimated. 

Here, it is not a vector tracking architecture that is 

proposed but only the parallelization of PLL and FLL 

with one loop on one channel to begin. 

The use of a Kalman filter rather than a conventional loop 

filter improves the estimation. Estimating simultaneously 

both PLL and FLL tracking errors makes the tracking 

process more robust to feared events, and, more precisely, 

to the receiver dynamics. A FPLL tracking loop allows 

detecting cycle slips when dynamics is important. This 

also reduces the convergence latency period when it 

comes to re-synchronize the signal in case of carrier phase 

or frequency stall.  

It is important to note that this architecture does not 

modify the DLL tracking loop operation which occurs 

separately with a conventional loop filter.   

3.2 Proposed algorithms description 

Here, two implemented algorithms will be described. It 

deals with FPLL tracking using a Kalman filter. The 

novelty of these proposed algorithms is to estimate jointly 

carrier phase and frequency errors: 

¶ ñKalman_based_FPLL_fixed_gainò derived 

from a paper written by Psiaki [10]. This 

tracking algorithm is a third order tracking and 

no more a second order. Thus, Kalman gain and 

command computations have to be reviewed 

compared to the reference paper (Table 1) to take 

into account PLL and FLL characteristics. 

¶ ñKalman_based_FPLL_variable_gainò 

derived from a paper written by OôDriscoll and 

Lachapelle [11]. This article describes a third 

order tracking to estimate jointly code and carrier 
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phase errors. Here, it deals with the estimation of 

carrier phase and frequency errors. That is why 

the measurement noise matrix depends on PLL 

and FLL characteristics and no more on DLL 

and PLL ones. 

Contrary to reference literature [10] [11], this paper 

exposes results of robustness to feared events of the 

proposed FPLL tracking algorithms in part 4. 

To estimate simultaneously carrier phase tracking error 

and frequency tracking error, both proposed algorithms 

have the same state vector. It is composed of Ў  carrier 

phase tracking error, ЎὪ frequency tracking error and ‌  

Doppler shift rate at time k. 

ὢ

Ў•
ЎὪ
‌

 (Eq 8) 

Discriminators outputs are considered as measurements in 

both algorithms and the vector is expressed as: 

ὣ
‐

‐  (Eq 9) 

Where ‐  is the carrier phase discriminator output and 

‐ the frequency discriminator output. 

The main difference between these two models concerns 

Kalman gain computation: fixed or variable. 

Computation of a fixed Kalman gain is based on the pole 

placement technique described on Appendix 1 [10] [12]. 

A fixed Kalman gain is not adaptive to measurements. So, 

a command is required to assist the Kalman filter in 

updating the state vector. This command needs to be 

conditioned by the receiver environment. 

A variable Kalman gain matches conventional Kalman 

gain and needs noise matrix settings.  

Here, the measurement noise matrix is a diagonal matrix 

without additive coefficients [13]. It is considered that 

correlation between state variables (carrier phase, Doppler 

frequency and Doppler shift rate) is made thanks to the 

Kalman filter equations and iterations. In this paper, the 

measurement noise matrix follows this model using 

conventional PLL and FLL tracking variances [14]:  

Ὑ

ụ
Ụ
Ụ
Ụ
Ụ
ợὄ ᶻ

ὅ

ὔπ
π

π
ρ

ς“ὝὩ
ψ
ὄ

ὅ
ὔπ

ρ
ρ

ὝὩz
ὅ
ὔπ Ứ

ủ
ủ
ủ
ủ
Ủ

 
(Eq 10) 

 

Where: 

¶ ὄ  is PLL bandwidth, 

¶ ὄ  is FLL bandwidth, 

¶ ὝὩ  is the sampling time. 

Then, dynamics noise matrix is a diagonal matrix [3x3] 

adjusted through trial and error principle. 

1

ʎ π π

π ʎ π

π π ʎ

 (Eq 11) 

The Table 2 summarizes settings and calculations main 

steps of the proposed two FPLL tracking algorithms. 

Algorithm 
ñKalman_based_FPLL_ 

fixed_gainò 

ñKalman_based_FPLL_ 

variable_gainò 

Filter gain 

Fixed gain [3x2] 

Depending on ὄ  and 

ὄ  

Variable gain [3x2] 

Depending on ὄ  , 

ὄ  and noise matrix 

State vector ὢ

Ў•
ЎὪ
‌

 ὢ

Ў•
ЎὪ
‌

 

Measurement 

vector 
ὣ

‐
‐  ὣ

‐
‐  

State 

transition 

matrix  

‰
ρ ὝὩὝὩȾς
π ρ ὝὩ
π π ρ

 ‰
ρ ὝὩὝὩȾς
π ρ ὝὩ
π π ρ

 

Measurement 

matrix  

Ὄ
ρ ὝὩȾς ὝὩȾφ
π ρ ὝὩȾς

 

Ὄ
ρ ὝὩȾς ὝὩȾφ
π ρ ὝὩȾς

 

Command 

Ўό
ὝὩzὔὅὕ ὝὩȾφ‐

ὝὩz‐
 

/ 

A priori state 

estimation 

ὢȿ
‰ ὢz ȿ Ўό 

 

ὢȿ ‰ ὢz ȿ  

 

Measurement 

estimation ὣ Ὄὢȿ
ρ

ς
Ўό ὣ Ὄὢȿ  

Innovation ὣ ὣ ὣ ὣ 

State 

estimation 

ὢȿ
ὢȿ ὑ

ὭzὲὲέὺὥὸὭέὲ 

ὢȿ
ὢȿ ὑ

ὭzὲὲέὺὥὸὭέὲ 

Table 2: Description of two FPLL tracking algorithms 

for carrier phase and Doppler frequency errors 

estimation 
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3.3 Hypotheses 

In this paper, to test robustness of proposed algorithms, 

only GPS L1 C/A signals with a BPSK waveform are 

processed. The sampling frequency at the correlatorsô 

outputs is set to 100 Hz.  

This study deals with carrier phase tracking loop PLL and 

frequency tracking loop FLL. Some hypotheses are taken 

about the discriminator type, tracking loop order, loop 

bandwidth and integration time.  

The loop order is conditioned by signal dynamics and 

needs to be adapted depending on the required robustness 

to dynamics effects. 

The choice of loop bandwidth and integration time is 

based on thermal noise impacts analyses [14].  

„
ὄ

ὅ
ὔ

ρ
ρ

ςὝ
ὅ
ὔ

 
(Eq 12) 

„
ςὄ

“Ὕ
ὅ
ὔ

ρ
ρ

Ὕ
ὅ
ὔ

 
(Eq 13) 

The loop bandwidth is an important parameter. Indeed, a 

low loop bandwidth decreases the thermal noise but also 

slows down the capability of the filter to follow dynamics 

changes. A high loop bandwidth increases the thermal 

noise impact but the loop filter is capable of following 

more accurately the dynamics changes. 

In Table 3, main loop hypotheses are recalled for the FLL 

and PLL. 

 

 PLL FLL 

Discriminator type ATAN Diff ATAN  

Loop order 3 2 

Loop bandwidth ║╛ 10 Hz 18 Hz 

Integration time ╣╓ 10 ms 10 ms 

Table 3: Hypothesis on tracking loops PLL and FLL 

In the following, if the simulation results refer to ñstatic 

receiver modeò, only the satellites dynamics are taken 

into account and the receiver antenna phase centre is 

considered fixed in the ECEF WGS84 reference. If the 

simulation results refer to dynamics, some Doppler values 

are tested with Doppler shift rates and jerks detailed in the 

following. 

3.4 Performances in ñstatic receiver 

mode
3
ò  

In this part, the performances of proposed FPLL tracking 

models are presented in ñstatic receiver modeò. In this 

                                                           
3
 Static mode: simulation hypothesis described part 3.3. 

case, since measurements have low variations, the 

Kalman filter needs low updating values to follow them. 

According to Figure 6 and Figure 7, the Kalman filter 

estimates correctly frequency errors in two FPLL tracking 

algorithms. 

With ñKalman_based_FPLL_fixed_gainò model (Figure 

6), estimations of carrier phase tracking errors present 

lightly wider variations (red) than carrier phase 

measurements (blue). And, in the 

ñKalman_based_FPLL_variable_gainò (Figure 7), there is 

an offset of 0.01 rad between carrier phase tracking errors 

estimation (red) and carrier phase measurements (blue). 

Nevertheless, these gaps are very low and can be solved 

by adding a command to accurately adjust measurements 

according to Kalman filter outputs. 

 

Figure 6: Carrier p hase and frequency tracking errors 

(red) with respect to carrier phase and frequency 

measurements (blue) in static mode with 

ñKalman_based_FPLL_fixed_gainò model 

 

Figure 7: Carrier p hase and frequency tracking errors 

(red) with respect to carrier phase and frequency 

measurements (blue) in static mode with 

ñKalman_based_FPLL_variable_gainò model 
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Therefore, these two FPLL tracking algorithms show fair 

performances in static mode to estimate jointly carrier 

phase and frequency tracking errors.  

3.5 Comparison with the conventional 

tracking 

The Table 4 summarizes tracking error standard 

deviations and convergence times obtained with the 

conventional tracking algorithm and the two proposed 

FPLL tracking models in ñstatic receiver modeò. 

 

 

Model Conv time Phase error 

STD 

Conventional - 0.01 rad 

KF FPLL Fixed Gain  0.15 sec 0.004 rad 

KF FPLL Variable Gain  0.2 sec 0.004 rad 

Table 4: PLL performances of conventional tracking 

and proposed FPLL tracking in ñstatic receiver modeò 

This Table 4 highlights a better precision in estimation of 

FPLL tracking than conventional tracking because it 

shows lower variations of carrier phase tracking errors 

around convergent value.  

So, FPLL tracking reduces tracking errors compared to 

conventional tracking. Nevertheless, it introduces a slight 

convergence time. 

Another advantage of FPLL tracking is its capability to 

estimate jointly carrier phase and frequency tracking 

errors whereas conventional tracking does it sequentially. 

3.6 Receiver environment adjustment 

points  

Here, are proposed key points on which it is possible to 

play to adapt the FPLL tracking models to the application 

environment. 

 

Concerning ñKalman_based_FPLL_fixed_gainò model, a 

command is used to update the filter. To take into account 

the receiver environment, this command has to be updated 

and expressed according to it. 

 

For the ñKalman_based_FPLL_variable_gainò algorithm, 

to consider the antenna environment requires an 

adaptation of noise matrix configuration or, directly an 

automation of Kalman gain computation without noise 

matrix settings. 

To modify the measurement noise matrix R, a solution 

can be to constrain more the state variance model taking 

into account the impact of thermal noise, phase 

scintillations and receiver oscillator noise [6]: 

 

 

 

„ „ „ „  (Eq 14) 

Where: 

¶ „  the thermal noise impact, 

¶ „  phase scintillations variance, 

¶ „  receiver oscillator noise impact. 

The Figure 8 illustrates the relation between the carrier 

phase error standard deviation and the PLL bandwidth 

depending on what environment constraints are 

considered. 

 

Figure 8: Standard deviation of the phase error as 

function of the loop bandwidth and with vibration, 

phase error, thermal noise, dynamics and all the 

effects. The main hypotheses taken are: a TCXO 

oscillator, C/N0 = 30 dBHz, 1 ms integration time. 

To automate the variable Kalman gain and to avoid 

adjusting noise matrix, it is possible to use ARMA 

coefficients. A patented algorithm called 

ñKalman/ARMAò [15] connects Kalman gain and ARMA 

coefficients computations bypassing the use of noise 

matrix. This new algorithm is detailed in part 5.2. 

3.7 FPLL tracking algorithms complexity  

A complexity study is necessary to assess the portability 

of the algorithms on any code hosting platform and the 

use on various applications. This complexity analysis of 

the algorithms would include the study of the mandatory 

settings and an approximation of the number of 

calculation steps.  

A Kalman-based tracking is more complex to implement 

in terms of computation than a conventional one.  

Now, fixed and variable Kalman gain computation 

complexities are compared in case of a FPLL tracking 

architecture. 
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On one hand, a variable Kalman gain requires lots of 

necessary settings to adjust noise matrix as for a known 

third order Kalman-based tracking.  

On the other hand, for a constant Kalman gain, settings 

are less numerous. However, to set a third order Kalman 

gain needs complex calculations. Moreover, the command 

used to update the filter must be configured in accordance 

with the receiver environment and so, the applications. 

 
KF FPLL fixed 

gain 

KF FPLL 

variable gain 

Main 

configurations 

Command to update 

the filter 

Noise matrix to 

compute the 

filter gain 

Demanding 

calculations 

Constant gain 

computation + 

Known Kalman 

equations with a 

command 

Known 

Kalman 

equations 

Table 5: Short complexity comparison between fixed 

and variable gain in case of a FPLL tracking 

algorithm 

Therefore, according to the Table 5, in a FPLL tracking 

architecture, it is easier to use a variable Kalman gain 

once noise matrix configuration is found than a constant 

one. 

This short complexity analyse is a start to conclude if the 

proposed FPLL tracking algorithms are flexible and can 

be embedded to any hardware platform in order to be used 

for various GNSS applications. 

4 RESISTANCE TO FEARED 

EVENTS OF PROPOSED FPLL  

TRACKING  MODELS 

With a growing GNSS market and the emergence of new 

specific GNSS need, new environment constraints appear 

and receivers robustness have to be improved to ensure 

signal processing in harsh environments. In this part, 

proposed FPLL algorithms robustness to some feared 

events will be analysed. 

4.1 Feared events classification 

At space segment, ground segment and user segment 

levels, various feared events may impact the final services 

performances. The feared events may be classified in five 

categories as shown in the Table 6. 

 

 

Segment 

level 
Some feared events 

Satellite 

and 

receiver 

levels 

¶ Loss of signal due to a satellite 

problem, 

¶ Code-carrier incoherency satellite 

induced by code-carrier divergence, 

¶ Jump in inter-frequency hardware bias, 

¶ Doppler frequency instability, 

¶ IODE (Issue Of Data Ephemeris) 

anomaly, 

¶ Erroneous ephemeris, 

¶ Noisy ephemeris, 

¶ Corrupted navigation message, 

¶ Signal distortion, 

¶ Drift in inter-frequency hardware bias. 

Signal in 

space 

(SiS) level 

¶ SIS step error (incl. clock jump), 

¶ SIS ramp error (incl. clock drift), 

¶ SIS acceleration error, 

¶ SIS sinusoid error, 

¶ SIS noise error (incl. excessive phase 

noise on carrier). 

Regional 

level 

¶ Excessive ionospheric spatial gradient, 

¶ Excessive ionospheric temporal 

gradient, 

¶ Excessive ionospheric scintillation, 

¶ Excessive troposphere. 

Local 

level 

¶ Excessive electromagnetic interference 

(including intentional sources of 

interference such as a scrambler), 

¶ Excessive multipath, 

¶ Non-line of sight conditions. 

Receiver 

hardware 

level 

¶ Damaged antenna, 

¶ Damaged cable, 

¶ Lack of power supply. 

Table 6: Classification of some feared events 

according to segment levels 

SIS errors are a major error source for the GNSS. They 

are defined as any errors related to satellite transmission, 

position and clock errors. The SIS errors are a metric to 

determine satellites failures.  

Excessive ionospheric gradients are considered as an error 

source for position computation and integrity monitoring.  

Hardware feared events lead to a loss of signal but not 

due to a satellite problem and has to be differentiated 
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from the feared events at a satellite level which also lead 

to a loss of signal. 

All the feared events will not be addressed in this paper. 

Nevertheless, the focus will be made on weak signals, 

high dynamics, multipath effects, interferences and 

ionospheric scintillations. 

4.2 Feared events/applications mapping 

The diversification of GNSS applications means the 

emergence of new environment constraints. Indeed, 

feared events are really dependent on the environment of 

the receiver antenna. 

 

The purpose of this part is to make a repartition of feared 

events according to their probability of occurrence for 

each application. 

 

The five feared events considered are these for which a 

robustness study will be presented later in this paper: 

weak signals, dynamics, multipath effects, interferences 

and scintillations. And, the GNSS fields of application 

compared are: road, rail, maritime, agriculture, aviation, 

space LEO satellites and space GEO satellites. 

 

A scale of feared events is proposed on Table 7 to build 

the mapping between theses feared events and GNSS 

markets. The grade extends from 1 to 5 meaning the 

feared event has a low probability to be encountered to 

high probability. 

 

 

Grade 
Signal 

strength 
Multipath Dynamics  Scintillations 

1 -130 dBm 
5 m/2° 

(countryside) 
5 kHz 0.2 S4 index 

2 -135 dBm 
5 m/90° 

(house) 
15 kHz 0.4 S4 index 

3 -140 dBm 
10 m/180° 

(village) 
25 kHz 0.6 S4 index 

4 -145 dBm 
20 m/360° 

(city) 
35 kHz 0.8 S4 index 

5 -150 dBm 

200 m/360° 

(canyon 

buildings) 

45 kHz 1 S4 index 

Table 7: Proposed scale of feared events for the 

mapping 

 

In the Table 7, the criterion ósignal strengthô corresponds 

to the minimal detected power of signal and allows to 

judge of the signal weakness. The ómultipathô criterion is 

based on height of reflective surfaces and on how much 

(in degrees) the receiver is surrounded by reflective 

surfaces. The ódynamicsô criterion is the Doppler shift 

value for a GPS L1 C/A. The Appendix 2 presents 

Doppler shift values computed in three GNSS 

applications. The óscintillationsô criterion is a scale to 

compare ionospheric scintillations probability of 

occurrence for each considered GNSS application. No 

metric is used to graduate the power of interferences 

because this feared event really depends on the receiver 

environment and canôt be generalised. So, just an 

appreciation of the occupied area has been taken into 

account to distinguish interferences impact according to 

the GNSS field of application. 

 

Based on this graduation, the Figure 9 illustrates the 

mapping between studied feared events and chosen 

applications families. 

 

 

 
 

Figure 9: Mapping between feared events and GNSS 

markets 

 

Rail and road applications can be viewed as a same use 

case because almost same feared events are encountered. 

Indeed, these GNSS markets are particularly affected by 

scintillations and multipath effects due to buildings and 

vegetation. 

As the main very restrictive feared events are 

scintillations and environments are similar (oceans and 

wide plains), maritime and agriculture fields can also be 

gathered. 

Scintillations and interferences that can be continuous or 

pulsed are the most disturbing feared events in aviation. 

High dynamics is a real constraint for space receivers in 

LEO satellite receivers. Indeed, for a GPS L1 C/A 

receiver, Doppler shift can reach values of 44.55 kHz 

(Appendix 3). 

Space receivers embedded in GEO satellites mainly suffer 

from weak signals with signal strength of -151dBm for a 

GPS L1 C/A (Appendix 3). 

In the following parts, robustness of proposed FPLL 

tracking algorithms to these five feared events spread in 

GNSS applications will be tested. 

4.3 Low carrier to noise ratios 

Multipath, interferences and high dynamics induces 

respectively signal fading, signal jamming and antenna 

pattern sweeping that generate variations of carrier to 

noise ratios. As previously shown, added to this, there are 

weak signals particularly in space GEO applications. 

Thus, the first modelsô performance test deals with 

evaluating robustness to several values of C/N0.  
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Conventional tracking gives divergent carrier phase 

tracking errors for low C/N0 while FPLL tracking 

algorithms provides a correct carrier phase 

synchronization.  Figure 10 illustrates this distinction of 

performance on estimation of carrier phase tracking errors 

in case of C/N0=21 dBHz. 

 

Figure 10: Carrier p hase tracking errors (rad) with 

conventional model (blue), 

óKalman_based_FPLL_fixed_gainô (green) and 

óKalman_based_FPLL_variable_gainô (red) in case of 

C/N0=21dBHz  

Therefore, proposed FPLL tracking algorithms (with 

variable and fixed Kalman gain) are more robust to low 

carrier to noise ratios than a conventional tracking. 

4.4 Receiver dynamics 

The receiverôs dynamics corresponds to all the 

movements of the receiverôs antenna with regard to the 

satellites radial movements. It implies frequency changes 

and, then has an impact on the calculation of the signal-

to-noise ratio at the correlator output due to a moving 

correlator peak. 

The worst case concerns space applications. Indeed, as 

provided in Appendix 3, LEO satellites embedded 

receivers have large Doppler shifts and Doppler shift rates 

which imply: 

¶ A very good acquisition capability with 

optimized frequency cells search, 

¶ A very good capability to track the signals, in 

particular with antennas attitudes evolutions, 

¶ A capability to minimize the acquisition to 

tracking transition step, 

¶ A capability to re-acquire (warm start) quickly 

the signals after tracking loss. 

On the Figure 11 are plotted carrier phase tracking errors 

in case of the worst values of Doppler shift (44,55 kHz) 

and Doppler shift rate (13,53 Hz/s) for a LEO satellite 

receiver (GPS L1 C/A). 

 

Figure 11: Carrier p hase tracking errors (rad) with 

conventional tracking (blue), 

óKalman_based_FPLL_fixed_gainô (green) and 

óKalman_based_FPLL_variable_gainô (red) in case of  

Doppler shift=44,55 kHz and Doppler shift rate=13,53 

Hz/s (C/N0=50dBHz) 

FPLL tracking architecture allows a correct 

synchronization in carrier phase with errors not varying 

much whereas conventional tracking provides divergent 

errors. 

Thus, both proposed FPLL tracking algorithms are robust 

to high dynamics. 

4.5 Ionospheric scintillations 

Ionospheric scintillations are induced by ionospheric 

irregularities and affect GNSS signals in two ways: 

dispersion and diffraction. The first one affects the group 

delay and phase advance of the signal. And, the second 

one scatters GNSS signal and causes fluctuations in the 

signal amplitude and phase. 

 

The received signal affected by scintillations may be 

modelled as follows: 

 

ίὸ
ὃ‏ὄ ὧὸὨὸÃÏÓ ς“Ὢὸ
— •‏ ὲὸ 

(Eq 15) 

Where: 

¶ A is the signal amplitude, 

ὄ‏ ¶  is the scintillation magnitude, 

¶ ὧὸ is the PRN code (L1 C/A BPSK here), 

¶ Ὠὸ is the navigation message, 

¶ f0 is the nominal carrier frequency (intermediate 

frequency after down-conversion), 

•‏ ¶  is the scintillation carrier phase, 
¶ —  is the carrier phase delay. 

In the equation 15, the code delay is not taken into 

account. One can derive that scintillations will affect the 

correlatorsô outputs as well as discriminators. 
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Scintillations were simulated, and the corresponding 

tracking performances were assessed. Figure 12 and 

Figure 13 present the phase and the amplitude of the 

generated scintillation.  

 

 
Figure 12: Generated scintillation phase 

 

 
Figure 13: Generated scintillation amplitude 

 

The Figure 14 provides carrier phase errors of proposed 

FPLL tracking algorithms and conventional tracking 

model in presence of scintillations in ñstatic receiver 

modeò. 

 

 
Figure 14: Carrier phase tracking errors (rad) with 

conventional model (blue), 

óKalman_based_FPLL_fixed_gainô (green) and 

óKalman_based_FPLL_variable_gainô (red) in case of 

scintillations (ñstatic receiver modeò) 

On the Figure 14, the above curve shows that 

conventional tracking model provides convergent carrier 

tracking errors but around -6.3 radians. On the contrary, 

proposed FPLL tracking models allows to have 

convergent carrier phase errors around 0. Thus, proposed 

FPLL tracking is more robust to scintillations than 

conventional one.  

Moreover, a fixed Kalman gain in case of FPLL tracking 

seems a little bit more robust than a variable one that 

provides errors shifted of 0.05 rad. 

4.6 Multipath  

Multipath replicas are faded and delayed Non Line Of 

Sight RHCP signals (with at least two reflections to be 

polarized at the antenna level). 

The following equations correspond to the correlator 

outputs in which a term represents multipath impact. 

 

Ὅὸ
ὃ

ς
ὨὸίὭὲὧ“‐ Ὑ ‐ ÃÏÓ‐ ὲ ὸ

‌
ὃ

ς
ὨὸίὭὲὧ“‐ Ὑ ‐

   

Ў† ÃÏÓ‐ Ў—  

(Eq 16) 

ὗὸ
ὃ

ς
ίὭὲὧ“‐ Ὑ ‐ ÓÉÎ‐ ὲ ὸ

‌
ὃ

ς
ίὭὲὧ“‐ Ὑ ‐

   

Ў† ÃÏÓ‐ Ў—  

(Eq 17) 

 

Where 

¶ A is the input signal amplitude, 

¶ d(t) is the modulation of the navigation message,  

¶ Ὑ is the code autocorrelation,  

¶ ‐ is the signal Doppler frequency error, 

¶ ‐ is the signal code delay error, 

¶ ‐ is the signal carrier phase error, 

¶ ὲ ὸ and ὲ ὸ are the additive and uncorrelated 

white Gaussian noises, 

¶ Ў† is the k
th
 NLOS signal replica code delay, 

¶ Ў— is the k
th
 NLOS signal replica phase delay, 

¶ ‌  is the k
th
 NLOS signal replica amplitude fading. 

 

Multipath effects imply the presence of secondary peaks 

and depend on the waveform and the correlation 

characteristics. For the L1 C/A signal, a single correlation 

triangle results from the correlation of PRN codes with a 

BPSK modulation, whereas in presence of subcarriers 

with BOC modulations, there are secondary peaks. 
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The multipath impact depends on the processed signals 

and the discriminators characteristics to input in the 

tacking algorithm. 

The Table 8 contains carrier phase error standard 

deviations of proposed FPLL tracking algorithms and 

conventional tracking model in order to compare their 

robustness. 

 

Model Phase error 

STD 

Conventional 0.33 rad 

KF FPLL Fixed Gain  0.09 rad 

KF FPLL Variable Gain  0.1 rad 

Table 8: Comparison of carrier phase error standard 

deviations between conventional tracking and the two 

proposed FPLL tracking models in presence of linear 

multipath  with 0.5 fading coefficient and 10
-6
 seconds 

delay 

All three models are robust to multipath effects with low 

carrier phase error standard deviations. However, FPLL 

tracking algorithms are more robust than conventional 

tracking. There is no really difference between fixed and 

variable Kalman gain in FPLL tracking algorithmsô 

robustness to multipath. 

4.7 Carrier Waves Interferences 

There are three main types of interference which are 

Carrier Waves (CW) interference, Wide Band (WB) 

interference and pulsed interference.  

In this paper, only CW interference with sine-wave form 

is considered [14]: 

ὅὡὸ ὖ ÃÏÓ ς“Ὢ ЎὪὸ — (Eq 18) 

Where: 

¶ ὖ  is the interference strength ( in dBW), 

¶ — is the interference phase ( in rad), 

¶ ЎὪ is the frequency shift of the interference against 

the considered GNSS signal carrier frequency (in 

Hz), 

¶ Ὢ is the intermediate frequency of the considered 

GNSS signal (in Hz), 

¶ Ὢ ЎὪ is the central frequency (in Hz). 

These interferences have an impact on the calculation of 

the signal-to-noise ratio at the correlator output as the 

interferences cause sinusoids on top of the correlator 

peak. The amplitude of the sinusoids is as important as 

the strength of interference is high. 

To test robustness of FPLL tracking to interferences, a 

carrier waves one is generated with a power of -165 dBW. 

This performance test is made in the worst condition that 

is to say without relative Doppler between the 

interference and the useful signal meaning the 

interference stays on a spectrum line. And, the chosen 

spectrum line is a worst one which is characterized by a 

frequency of 227 kHz (it corresponds to a theoretical 

spectrum line of PRN 6) [13] (Appendix 4). 

The Figure 15 represents carrier phase tracking errors for 

conventional tracking and for both proposed FPLL 

tracking models.  There is a short time of convergence for 

the three algorithms but lower errors with FPLL than 

conventional tracking before convergence. Then, carrier 

phase errors vary more with the conventional tracking 

than with a FPLL one. 

 

Figure 15: Carrier p hase tracking errors (rad) with 

conventional model (blue), 

óKalman_based_FPLL_fixed_gainô (green) and 

óKalman_based_FPLL_variable_gainô (red) in case of 

a -165 dBW CW interference on the worst PRN6 

spectrum line (C/N0=50dBHz) 

The histogram of carrier phase tracking errors after 

convergence, on Figure 16, confirms the fact that FPLL 

tracking provides lower standard deviations than 

conventional tracking.  

 

Figure 16: Histogram of carrier phase tracking errors 

standard deviations after convergence with 

conventional model (blue), 

óKalman_based_FPLL_fixed_gainô (green) and 

óKalman_based_FPLL_variable_gainô (red) in case of 

a -165 dBW CW interference on the worst PRN6 

spectrum line (C/N0=50dBHz) 
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Therefore, proposed FPLL tracking architectures are more 

robust to carrier waves interferences in worst case than a 

conventional on. Moreover, according to the histogram, a 

variable Kalman gain (with a setting of noise matrix) is 

more robust to interferences than a fixed Kalman gain in 

case of a FPLL tracking. 

4.8 Conclusion on proposed FPLL tracking 

modelsô robustness 

According to this study, a FPLL tracking algorithm has 

better performances and is more robust to feared events 

than a conventional tracking model, particularly in case of 

high dynamics. Moreover, using a FPLL tracking 

architecture enables to estimate jointly carrier phase and 

frequency tracking errors. Hence, it allows to jointly 

update the frequency synthesizer and the carrier NCO. 

The choice of a variable Kalman gain seems to be wiser 

than a fixed one in case of a FPLL tracking affected by 

interferences. Except for this environment constraint, 

differentiation between fixed or variable Kalman gain in a 

FPLL tracking architecture cannot be really done on the 

robustness to feared events. It is the algorithmsô 

complexity and so, the flexibility to the application 

environment that make a choice possible between these 

two models.  

Thus, proposed FPLL tracking algorithms are robust in 

harsh environments. It is a key point to answer to new and 

various GNSS needs linked with new environment 

constraints (part 4.2). 

But, they require some improvements to take into account 

the receiver environment and to detect feared events.  

5 INTEGRATION TO RECEI VER 

ARCHITECTURE  AND 

DISCUSSION ABOUT 

DETECTION CAPABILITY  

This part deals with the integration of the two proposed 

FPLL tracking algorithms in the receiver architecture to 

keep their robustness and bring detection of feared events. 

Thus, some various possible signal processing 

architectures will be proposed and discussed.  

5.1 Inter -channel tracking architecture 

The first proposed tracking architecture is the inter-

channel tracking. It is a kind of ñvectorisationò of FPLL 

tracking but at tracking level. The idea is to extend 

proposed FPLL tracking algorithms by using a Kalman 

filter to estimate simultaneously carrier phase and 

frequency tracking errors of all tracking channels. That 

means it is a Kalman filter whose state vector is 

composed of carrier phase and frequency errors from all 

tracking channels. 

This architecture is represented on the  

Figure 17. This architecture does still not modify the DLL 

tracking loop operation which occurs separately with a 

conventional loop filter 

 

 

 
 

Figure 17: Inter -channel tracking architecture 

 

 

The interest of this architecture is to benefit from existing 

inter-channel correlation at synchronization level in order 

to be robust from this step of signal processing. Another 

advantage of inter-channel correlation is to detect tracking 

anomalies and feared events like interferences by 

comparison between channelsô measurements. 

 

To improve this inter-channel tracking architecture and to 

take into account the receiver environment, it can be 

useful to add a state machine as represented on the  

Figure 18.  

 

Indeed, this state machine uses environment registers that 

analyse and save environment data. It allows to optimize 

signal processing by a selection of useful channels for 

synchronization process and a selection of noise settings 

in case of a variable Kalman gain. This last selection 

capability improves the measurement and dynamics noise 

matrix configurations. 

 
 

Figure 18: Inter -channel tracking architecture with a 

state machine 
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Thanks to cross correlation and this state machine, it 

strengthens robustness and it ensures detection of feared 

events and selection capabilities.  

 

Nevertheless, problem on one channel can generate 

dysfunction of all tracking process.  

5.2 Kalman/ARMA -based algorithm 

The patented Kalman/ARMA algorithm [15] can be used 

to improve proposed FPLL tracking algorithms in two 

ways: settings of variable Kalman gain and interference 

detection. 

 

The ARMA (Auto-Regressive Moving Average) model is 

a particularly simple parametric model for signals 

considered here as "discrete time" processes; purely non-

deterministic. ARMA modeling assumes that the signal is 

generated by a linear difference equation, with a finite 

order, which only shows some past values of the signal 

multiplied by coefficients (AR part) to which is added a 

random term (MA part) . 

 

An ARMA process is therefore an IIR (Infinite Impulse 

Response) filter which input is a zero-mean white noise. 

The coefficients of the ARMA process are separated into 

two groups: AR { }],1[; piai Í  and MA{ }],1[; qibi Í . 

 

The discrete time equation of the ARMA model is 

expressed as follows: 
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(Eq 19) 

Where: 

¶ p is the AR part order of the ARMA model, 

¶ q is the MA part order of the ARMA model, 

¶ n is a discrete white noise (as input) with zero 

mean with variance :
2

ns , 

¶ y is an output time sampled signal from the 

considered ARMA process. 

 
In this patented algorithm, the coefficients of an ARMA 

model are identified in an optimal way by approximating 

the ARMA model by a long AR model, that is to say with 

higher order than the orders of the classical ARMA 

model. This method does not solve the first p equations of 

Modified Yule Walker (MYW) but an infinite number of 

equations. Hence, its accuracy is increased. It is the AR 

part which contains the useful information concerning the 

signal to be extracted. The MA part contains the noise 

characteristics. 

Then, thanks to the ARMAôs coefficients computation, 

the state transition matrix ‰ and more particularly, the 

Kalman filter gain can be configured. 

In case of a second order Kalman-based tracking 

architecture, the relationship between the ARMA model 

and the filter is provided by the following equations: 
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 (Eq 20) 
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 (Eq 21) 

 

Where: 

¶ ‰ is the state transition matrix, 

¶ ὑ is the Kalman filter gain, 

¶ ὥ and ὥ are AR part coefficients, 

¶ ὦ and ὦ are AR part coefficients. 

 

More details about this algorithm are available in the 

Appendix 5. 

 

This patented Kalman/ARMA algorithm is an idea to 

automate Kalman filter gain computation bypassing the 

demanding noise matrix configurations. Moreover,   using 

ARMA coefficients allows to take into account the 

receiver environment and so, the variable Kalman gain is 

set up according to it. That is why it can be very useful to 

use it instead of a classic variable Kalman filter in a FPLL 

tracking architecture. It enables to have an adaptive gain 

to feared events. 

 

On the other part, this algorithm can be used for detection 

of carrier waves interferences. Indeed, filtered tracking 

errors are analysed in case of sinusoidal signals and so, 

carrier wave interference can be detected by consideration 

of the innovation term. 

 

Nevertheless, the presented relationship between the 

ARMA model and the Kalman filter characteristics deals 

with a Kalman-based second order tracking. Thus, using 

the Kalman/ARMA patent for a FPLL tracking model 

requires some adjustments. 

5.3 FAPI (Fast Approximation Power 

Iterated) algorithm 

The patented FAPI algorithm [16] can be used to improve 

proposed FPLL tracking algorithms in two ways: 

reduction of time of convergence and interference 

detection. 

 

It is not a Kalman-based algorithm but a model based on 

subspaces decomposition and power iterated method. 

FAPI algorithm provides better results than a Kalman 

filter. Moreover, it requires less demanding settings. The 

comparison is presented in the Appendix 6. Thus, it is an 

idea to replace the frequency and phase tracking 

architectures presented in this paper. 
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The FAPI algorithm provides several advantages. First, it 

is stable and fast. Secondly, it guarantees the signal space 

base orthonormality at each iteration. It also avoids matrix 

inversion and square matrix. Moreover, recursive least 

square method is used in order to track sinusoidsô 

amplitude and phase. 

Thanks to all these benefits, this algorithm has better 

performances than several tracking algorithms based on 

subspaces decomposition and power iterated method like 

Projection Approximation Subspace Tracking (PAST), 

Orthogonal Projection Approximation Subspace tracking 

(PAST) and Novel Information Criterion (NIC). The 

FAPI model is also faster than these other algorithms. The 

comparison between these algorithms is presented in the 

Appendix 7. 

 

To prove the interest of the FAPI algorithm in a FPLL 

tracking architecture, some preliminaries results are 

exposed hereafter. 

 

Figure 19 and Figure 20 represent how a FAPI model can 

track theoretical frequency and carrier phase variations of 

a down-converted signal. 

 
Figure 19: Frequency (Hz) with theoretical frequency 

variations (red) and FAPI estimations (blue) in case of 

a sudden frequency change 

 

 
Figure 20: Carrier phase (Hz) with theoretical carrier 

phase variations (red) and FAPI estimations (blue) in 

case of a sudden carrier phase change 

 

 

The fast convergence capability of FAPI algorithm (0.5 

seconds) is confirmed in a worst case that is when 

frequency and carrier phase vary suddenly (ȹf =1Hz and 

ȹű=0.4 rad). 

The FAPI model is performant to track a useful signal and 

so, if it tracks interferences, it is a mean to do interference 

detection. 

Therefore, the FAPI algorithm is a solution to improve 

proposed FPLL tracking architectures. However, some 

important modifications will be necessary because the 

FAPI algorithm tracks useful signals and not 

discriminators outputs. 

Contrary to Kalman/ARMA algorithm, the FAPI 

algorithm may not be used to set the FPLL tracking but to 

decrease the loops time of convergence and to improve 

robustness against high dynamics since it seems robust 

against brutal variations in frequencies. Moreover, further 

investigations are expected to demonstrate that FAPI may 

contribute to make more robust acquisition to tracking 

transition. In addition, both Kalman/ARMA and FAPI 

algorithms are candidates to provide interference 

detection. 

5.4 An improved vector tracking 

architecture 

The architecture discussed hereafter is an improved vector 

tracking considering here tracking and navigation levels 

as it is explained in part 2.4. 

This architecture is illustrated in the Figure 21. 

 

 

Figure 21: Improved vector tracking architecture with 

the FPLL architecture  

 


