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depends upon their waveforms that impact the
corresponding tracking channsétting, in particular the
choice of tracking loops characteristics: correlators,

BIOGRAPHI ES discriminators, filter orders and bandwidths.
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Two models are presentethe main difference between

the two models concegns the definition of the filter gain

t t6 fga%1 gen ﬁxed i@rf %alcul ) a%c%rhir‘?g to® d
meastements. Computing a variable gain requires
tracking loop bandwidths knowledge, dynamics and
measurement noise setting§his allows the filter to be
robust against the receiver dynamics. In comparison, a
fixed gain depends only on tracking loop bandwsdiiut

its computation must be as optimal as possible because it
weights all measurements in the same way.

This paper details models implementation: gain
computation, choices of measurement matrix and how to
estimate measumgents. Inspired by twexisting models
ABSTRACT (fixed gain and variable gain) that estimate carrier phase
tracking erros and frequenies the design of new models

In GNSS  receivers, conventional scalar tracking implies an adaptation of measurement matrix and gain. In
algorithms allows to synchronizedaming signals with various conditions dccurrenceof feared events, filters
their locally generated replicas in terms of code delay, settingé), the filterso est.i

Doppler frequency and carrier phase. In that way, basic  vector tracking is discussedhile including Kalman
DLL, FLL and PLL are used. The signals tracking
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filter-based algorithms. Furthermore, to complete the
analysis, feared event detection is discussed.

1 INTRODUCTION

With the development of new and existing navigation
systems (GPS, GALILEO, GLONASS, QZSS ..), the
variety of radio navigation signals increases greatly
involving 8 frequency bands and about 20 different
signals.

Additionally, the number ohew satellites Wh various
waveforms has increased, multiplying architecture
possibilities for multifrequency receivers.

Moreover, the architecture of receivers has taabke to
adapt to many growinGNSSmarkes. landbased, mass
market, transports, civil aviation, ilitary and space
appl i c @&ven better, &eceivers which are flexible
for several applications can be targeted. Therefore,
software receivers which can be updated are the future of
localization and navigation.

Thus, the architecture of GNSS receiversish be defined

as a scalable system, taking into account the wide range
of existing and expected signadsd depending orthe
application case.

When each useful signal is acquiredsic DLL, PLL and

FLL enable the synchronization between the incoming
sigral and its local replica in terms of code delay, Doppler
frequency and carrier phase. Those tracking loops depend
on tracking loops characteristics such as therfitirder

and the bandwidth. AslEE and PLL are mandatory to
perform frequency and phase shranization a lack of
robustness from the beginning of the synchronization can
impact the next steps of the tracking process, and then the
positioning process.

Therefore, to improve robustness, it is worth studying
new architectures of the tracking prese

For the sake of robustnesdjet tracking architecture
presentedn this paperelieson a FPLL (Frequency and
Phase bcked Looplusing a Kalman filtecoupled with a
state machineA Kalman filter is a known way to replace
a conventional tracking filteto provide better tracking
error estimation.

To complete the architecture proposele tidea is to
extend tle FPLL to all channelsand to vectorise itin
order to take benefit of channels correlations.

By using a state machine to select settings according to
the receiver environmenthe number of Kalman filters
used is limited and the receiver architecture is adaptive.

This paper highlightghefollowing main contributions:

1 Selection and settingf two FPLL algorithms
using Kalman filter: jointly estimation of
Doppler frequency and carrier phase errors by a
Kalman filter,

1 Identification of mostly encountered feared
events and mapping with applications (not
exhaustive)

1 Discussion on  robustness
algorithmsagainst feared events

1 Presentation of mprovemerd to perform the
tracking process under harsh environments,

1 Preliminary assessment and discussion about
patented algorithsn to perform signals and
feared events detection in noisgvironments

9 Discussion on vector trackingnd detection of
feared events

of proposed

The paper is organized as followafter a review @
conventional tracking architectyrds differences with a
Kalmanbased tracking, new algorithms witlheir
hypothess are presnted. Then, performances and
robustness of those algorithms larsh environments are
analyzed Finally, a discussion is led dmow to integrate
these algorithms in the receiver architectuee provide
feared events detection.

2 FOCUS ON RECEIVERS
SIGNAL TRACKING
ARCHITECTURE

It is necessary to identify
architectures for each application. The environment of the
receivers6 antenna wil/

the feared events must be mapped with each kind of
applc at i on. Finally,
be assessed in details to know if:

1 They are compliant with performances targeted
for each application,

1 They are robust against feared events,

1 Algorithms can be embedded in
HW/SW platforms.

targeted

In the following, the focus is made on the user segment
and in particular on the
capability to process GNSS signals in various
environments (and in particular in harsh environments).
This part is a state of the art about @xistg r ec e
tracking architectures: conventional tracking, Kalman
based tracking and vector tracking.

depe

promising



Figure 1 illustrates the signals processing for each part (channel). Here, only the real signad processed
channel including the acquisition and tracking processes because it deals with a GPS L1 C/A signal.
until the data demodulation.

The integrator used at the correlatautput is a lowpass

filter with integration timéy.
Configuration/nitialization
E Software initialization
T g Thus, in case of a complex signal, correlaiastputs
Channl & signal type configuration after integration can be modelled as following:
Signal acquisition
D Detection/Confirmation threshold ©
computation o~ 0 , o wmn Tk ~ . . N
Expected signal detection (@) —Qoi Qg¢wyY - Al O € 0 (Eq :D
Signal confirmation C
RVIA Best parameters selection (")
heze e Dopre) bo —ioeay- OE1 & o (Eqa 2
Signal tracking
| Validatiro(inosgrg;n%ﬁg;zamn Where
Tracking phase
Surveillance of synchronization
Data collecting and decoding . . . .
9 As the input signal amplitude,
— T d(t) is the modulation of the navigation message,
Navigation message v - .
Hevoding " 1 Y is the code autocorrelation,
1 - isthe signal Doppler frequency error,
Figure 1: Acquisition, tracking and demodulation - isthe signal code delay error,
steps per channel 1 - isthe signal carrier phase error,
T ¢ 0 andé¢ 0O are the additive and uncorrelated

white Gaussian noises.

2.1 Conventional tracking architecture In this paper, the focus is made on the PLL convergence,

) o ) in particular, the goal is to be able to demodulate the
Tracking process enables to synchronize ith@oming navigation data (d(t)) while:

signal and its locally generated replica, and mositbe
progress of code delay, Doppler frequency and carrier

0 . o
phase [1]. O —Qoi Q¥EwY - AITO £ 0

¢ e (Eq 3)
As for the acquisitionprocess, tracking can process only 4 00 EQ 0 €0
one channel at a time, but several trackingcpsses are .0, . o
run in parallel Some channels could be in acquisition Lo —i Q€w'Y - OEA

: . 9 . (Eq 4)

modé whereas others would already be in tracking 00 £ o
mod€. The high level conventional tracking loop ©

structure is described in tiégure2.

The discriminator is used to extract the correlation
product error in order to compute synchronization errors
of code, phase and frequency.

Incoming Loop
_ _

Finally, the filter enables to face side effects of signal
dynamics, mainly caused by satellite antenna and receive
relative dynamics. This bandpass loop filter is then
characterised by its bandwidth and order (order 1: speed;

Figure 2: Conventional tracking loop architecture order 2: accelerations; orde
gains of aconventionalloop filter corresponds to the
The correlator periodically achieves the correlation tracking loop order. For an ond® PLL [2]:

product between the input signal and the locally generated
replica. The replica is generated through the NCO

. ) . .
(Numericdly Controlled Oscillator). 0 (clc? Y (Ead
. L E

At the correlator output (of code, phase or frequency), the v a,” (Ea §
signd is split into a real part (channel I) and an imaginar

9 P part ( ) ginary o Sy (Eq D

X

! Acquisition mode: a state of one channel at a given time In conventional tracking loops, each operation in each
in signal processing. channel is independent. Pseudoranges and pseudsrange

2 Tracking mode: a state of one channel at a given time. It rates are computed separatel
follows the acquisition mode in signal processing



navigation filter that those measures are combined to
provide the navigation solution.

This type of tracking architecture is widespread in
receivers. Newugheless, conventional tracking presents
some drawbacksAlthough it gives correct navigation
solutiors in normal conditiongi.e. without considering
feared events)t is well-known thatconventional tracking
process is less performant in harsh environméumss of
positioning solutions or failures in code/carrier tracking is
common. Indeed, weak sigsabr significant signal power
drops impacthe correlation process. Thethe navigation
process is affected by lack of accuraof estimated
pseudoranges [34]. Moreover, it allows toprovide as
manypseudoranges awvailablechannels[5].

As it is expained in the next parf this paper, several
parameters, such as discriminator type, filter order and
loop bandwidth, have an impact on the signal tracking
behaviour.

A FLL is more robust than a PLL since it does not control
the exact value of the phaséthe local carrier, however
this loop will not allow the navigation message
demodulation. Indeed, it is necessary to minimize the
carrierphase error (convergeetowards zero) to be able

to demodulatenavigation message on a data channel
(considering ode synchronization is made)

The FPLL can also be used since it combines the
advantages of both PLL and FLL. This loop filter uses
two discriminator inputs for frequency awdrrier phase
errors. This loop is more robust than a conventional PLL.

2.2 Kalman-based tracking architecture

The Kdman filter based tracking loopconsists in
replacing the conventional loop filter by a Kalman loop
filter. This architecture is represented in Eigure3.

Incoming
Signal

Figure 3: Kalman-based tracking loop architecture

One of the Kalmabased tracking advantages is the
weighting of the quality of predictions compared to the
calculation, before updating each tracking occurrence.

In theory, the Kalmatbased algorithm provides the
optimal gain Thus, his tracking architdare is more
robustthan the conventional one:

1 To weak signals because the Kalman filter adapts
the filter bandwidth to the noise level J[6The
Kalman gain provides an adaptive bandwidth

filtering. In particular, this avoids using long
integration time ath enables improving the
sensitivity of tracking. Indeed, lock detectors
allow declaring theloss of lock of the local
replica to the input signal, atliow C/NO.

1 To scintillations because it optimize
automatically the loop filter minimizing the
phase measquare error. In that fact, a Kalman
based tracking provides better performances than
a conventional PLIL7].

The main problem of a Kalmawased tracking loop
relates tahe settings of noise matrix used to compute the
gain.Indeed, performances dependtba use of a correct
statespace dynamic modand onthe monitoring of the
actual measureemt noise [J.

Generally, the Klman filtergain is variable, it adapts to
measurements and particljato the C/NO level. But the
Kalman filtergain can be fixed and the weighting is done
by a command helping the filter updating according to
measurements

The Table 1 contains two Hlmanbasd tracking
algorithms implemented at the PLL and FLL
discriminatos  outputs that are considered as
measurementsThese algorithms estimate only phase
errors by using estimated Doppler frequencilse first
algorithm presents a celant Kalman filter gairand uses
an updating commandhereas the second has a variable
Kalman filter gain.
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P YR ° P 2.4 Vector tracking architecture
Command Yo "Y@( 6 W00 /
A vector tracking architecture is defined as the processing
Apriori state ~ © ¢ & of gll ghannels yvith one loop for'both trac_king and
estimation %2 O V6 %2 B o navigation[8]. This architecturecombines tracking and
navigation processesA Kalman filter is used at
v . 0 navigation levelto estimate both tracking errors and
easuremen . . < " o~ o . .
DA Zye osition. It deals with an extended Kalman filter.
estimation @ C Yo S P
Three kinds of vector tracking are mainiged: Vector
Innovation @ @ w o Frequency Lock Loop (VFLL)Vector Delay Lock Loop
. (VDLL) and Vector Delay and Frequency Lock Loop
Ws (A (VDFLL).
State AR o o
e Ps . s
e V'QEEED WO s o o mn In a Vector Frequency Lock Loop (VFLL), the frequency

wa w000 06 discriminator output and rangate measurements are

Table 1: Description of two Kalman-based tracking used. The velocity navigation states are used in an
algorithmsfor carrier phase errors estimation Extended Kalman FilterThe Figure 5 illustrates the
architecture of VFLL tracking.

2.3 FLL -aided PLL tracking architecture

Incoming
Signal

Tracking Navigation

The FLL-aided PLL tracking architecture is a way to
optimize the transition from the FLL loop to the PLL loop
in case of dynamicdndeed due to the Doppler effect,
frequency evolves quicklyand the transition from the
FLL loop to the PLL loop has to followhese frequency
evolutions so that the carrier generator and the frequency
synthesizer jointly work. In case of a Haided PLL
tracking,the FLL loop absorbs frequency tracking errors
that allows a faster carrier phase synchronizatitms
architectures presented on the

Figure4.

Figure 5: Vector Frequency Lock Loop (VFLL)
architecture

A VFLL may be used to achieve robust frequency
tracking. The carrier phase tracking may be aided thanks
to the VFLL outputs. The robustness of vector frequency
tracking that exploits crosshannel aidinggombined with

the accuracy ofthe PLL carrier phasetracking is of
interest for various applications in harsh environments.
This architecture implies the outputs from the VFLL and
PLL discriminators and filters are inputs of the carrier
NCO. In this way, the PLL tracks the residual careeor
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whereas th&/FLL tracks the dynamics from all satellites
signals.

In case of a Vector Delay Lock Loop, the architecture is
the same with the use obde discriminators outputs and
pseudo range measuremeniastead of frequency
discriminatos outpus and rangeate neasurementsA
VDLL tracking ensures robustness to low C/NO ratios and
interference$4].

A VDFLL architecture is a combination of both previous
architectures VFLL and VDLL to improve robustness in
harsh environments. More particularly, this architecture
provides better performances, in terms of tracking
efficiency and position estimation, than a conventional
tracking in case of dynamics and few visible satel[4iés

Therefore, more generally, egtor tracking presents
various advantages compared to amtional tracking
[9]. Indeed, by correlation of channels, it allows to
estimate 4 unknowns (3 positions and a clock bias) thanks
to N measurements while conventional tracking estimates
only N pseudoranges with N satellifes s i [§]nThdn,s
vector trackng provides better performances mainly
enables a better reliability to face interferences and better
detection ability. Vector tracking is more robust than
conventional one in following points:

1 The minimum signato-noise ratio under which

the receiver can operate correctly is lower when

signals are processed together rather than
separately8].
1 In addition to this reliabilty to face

interferences, vectorisation enables the reliability
of the traking when facing cycle slips and
receiversfs dynamic

9 Crosscorrelation allows to bridge signal outages
of some satellites and to reacquire them
immediately when they reapp€8i.

1 Vector tracking is also used to reduce multipath
effects. Indeed, thank® tchannels comparison,
NLOS (Non Line Of Sight) signals are detected

[4].

However, vectorising the tracking has some defects. The
main issue is that an error on one channel spreads over all
other channels. A problem on one channel can actually
impact theothers and lead to the receiver instability or to
the desynchronization with all the satellites.

Furthermore, vectorised tracking is complex to implement
[9] and has a longer launching process than a scalar one.

Finally, VFLL, VDLL and VDFLL donat allow to track
carrier phaseThese architectures require a conventional
PLL in parallel. A solution can be to use a serial PLL
connected t&/DFLL architecture so thahe PLL of each
channel benefitdrom the frequency estimation by the
VDFLL structure. Here,manomaly in PLL tracking dee
not affect the VDFLL tracking3].

This study is done to analyse another solution to improve
tracking robustness by taking into account carrier phase
estimation in order to accelerate navigation message
demodulation.Contrary to vector tracking, itdoes not
consider navigation process but just tracking process.

3 PROPOSED FREQUENCY AND
CARRIER PHASE (FPLL)
TRACKING ALGORITHMS
USING KALMAN FILTER

3.1 Introduction

It deals with the implementation of a FPLL tracking using
a Kalman filer on only one channel. It meacarrier
phase and frequency tracking errors are jointly estimated.
Here, it is not a vector tracking architecture that is
proposed but only the parallelization of PLL and FLL
with one loop on one channel to begin.

The use ba Kalman filter rather than @nventionaloop

filter improves the estimation. Estimating simultaneously
both PLL and FLLtracking errors makes the tracking
process more robust to feared events, and, more precisely,
to the receiver dynamic®\ FPLL traking loop allows
detectingcycle slipswhen dynamics is importanthis

also reduces the convergence latency peridienwit
comes to resynchronizethe signal in case afarrierphase

or frequeng stall

It is important to note that this architecture doest
modify the DLL tracking loop operation which occurs
separgely with aconventionaloop filter.

3.2 Proposed dgorithms description

Here, two implementedalgorithmswill be described It
deals with FPLL tracking using a Kalman filterThe
novelty of thee proposed algorithms is to estimate jointly
carrier phase and frequency errors

T AKal man_based_FPL Llderited x e d _

from a paper written by Psiak{10]. This
tracking algorithm s a third order trackingnd

no more asecond order. Thus, Kalman gain and
command computations have to be reviewed
compared to the reference pafEablel) to take
into account PLL andIH characteristics.

T AiKal man_based_ FPLL vari al

derived froma paper written by
Lachapelle[11]. This article describes a third
order tracking to estimate jointly code and carrier

6



phase errors. Here, it deals with the estimation of
carrier phase and frequency errors. Tisatvhy

the measurement noise matrix depend PLL
and FLL characteristics and no more on DLL
and PLL ones.

Contrary to redrence literature [10[11], this paper
exposes results of robustness to feared events eof th
proposed FPLL tracking algorithnts part4.

To estimatesimultaneouslycarrier phase tracking eor
and frequency tracking error, both proposed algorithms
havethe samestate vectarlt is composed o¥ carrier
phase tracking errob'Q frequency tracking error and
Doppler shift rateat time k.

Ye
A y'Q
|

(Eq 9

Discriminators outputs are considered as measureriments
both algorithmsand the vector is expressed as:

(AT (Ea9

Where- is thecarrier phase discriminator output and
- the frequency discriminator output.

The main differencdetween these two modatencerns
Kalman gain computation: fixed or variable

Computation of dixed Kalman gains based on the pole
placement techique described on Appendi [10] [12].

A fixed Kalman gairis notadaptive to measurements. So,
a command is required tassist the Kalman filter in
updating the state vectorThis command needs to be
conditioned bythereceiver environment.

A variable Kalman gain matcheonventionalKalman
gain and needs noise matrix settings.

Here, the raasurement noise matrg a diagonal matrix
without additive coefficientd13]. It is considered that
correlation between state variables (carrier phase, Dopple
frequency and Doppler shift rate) is made thanks to the
Kalman filter equationsnd iterationsIn this paper, the
measurement noise matrifollows this model using
conventional PLLand FLL tracking variancg44]:

Where:

&
&

1
1
1

is PLL bandwidth,
is FLL bandwidth,
“YQs the samplingime.

Then, ynamics nase matrix is a diagonal matrix [3x3]
adjusted through trial and error principle.

(Eq 1)

The Table 2 summarizes settings and calculations main
steps of the proposed two FPLL tracking algorithms.

Algorithm

Filter gain

State vector

Measurement
vector

State
transition
matrix

Measurement
matrix

Command

A priori state
estimation

Measurement
estimation

Innovation

State
estimation

fiKalman_based_FPLL_

fixed gai

Fixedgain [3x2]
Depending o®  and
6
y‘
® yQ
|

p YQYQIC
%o T P “YQ
T T P

p Y& YR
T op Y&

YR & YOI -
Y-

W
(AYS 0

20 £ €L O

fiKalman_based_FPLL_
vari abl e

Variable gain [3x2]

Depending o
6 andnoise matrix
Ve
® yQ
|

p "YQ"YOI¢
%o T P YQ
T T p

p Y& YO
mop  YI

W g %?

. 6
[a4) z — Tt 11
LTT i
¥ . » (Eq19
1 P LIJ (0] 0 P i
11 T “ - - ]
¢ 'YQ 0 O !
u 0T Y@ ur

Table 2: Description of two FPLL tracking algorithms
for carrier phase and Doppler frequency errors

estimation



3.3 Hypotheses

In this paperto test robustness of proposed algorithms,
only GPS L1 C/A signals with a BPSK waveformea
processed. The samplinjequency at the correla®rd
outputs isset to100 Hz.

This study deals witkarrierphase tracking loop PLL and
frequency tracking loop FLL. Some hypotheses are taken
about the discriminator type, tracking loop order, loop
bandwidth and integration time.

The loop order is conditioned by sajndynamics and
needs to be adapted depending on the required robustness
to dynamics effects.

The choice of loop bandwidth and integration time is
based on thermal noise impacts analy$dk

6 p

" T‘d_ C"Yb"é— (Eq 12

” fo g P pé (Eq 13
Y Yo

The loop bandwidth is an important parameter. Indeed, a
low loop bandwidth decreases the thermal noise but also
slows down the capability of the filter to follow dynamics
changes. A high loop bandwidth increases the therma
noise impact but the loop filter is capable of following
more accurately the dynamics changes.

In Table3, main loop hypotheses are recalled for the FLL
and PLL.

PLL FLL
Discriminator type ATAN Diff ATAN
Loop order 3 2
Loop bandwidth ||4 10 Hz 18 Hz
Integration time 4| _ 10 ms 10 ms

Table 3: Hypothesis on tracking loops PLL and FLL

In the foll owing, i f the si
receiver modeo, only the sa
into account and the receiver antenna phase centre is
considered iked in the ECEF WGS84 reference. If the
simulation results refer to dynamics, some Doppler values

are tested with Doppler shift rates and jerks detailed in the

following.

3.4 Performances in A st a treceoer

mode®d

In this part, the performances of propo$delL tracking
model s are present ed. Inithis

3 Static mode: simulation hypothesis described part 3.3.

case, sincemeasurements have low variations, the
Kalman filter needs low updating values to follow them.

According to Figure 6 and Figure 7, the Kalman filter
estimates correctly frequency errors in two FRidcking
algorithms.

With AKal man_based_FRHgurefi xe
6), estimations ofcarrier phase tracking errors present

lightly wider variations (red) than carrier phase
measurements (blue). And, in the
iKal man_based_ FPIFigurel)atheredasb | e _

an offset of 0.01 rad betweearrierphase tracking errors
estimation(red) and carrier phase measureme(iikie).
Nevertheless, these gaps are very low and can be solved
by adding a command taccuratelyadjustmeasurements
according to Kalman filter outputs.

sortie du filtre de Kalman: estimation erreur PLL (rouge) et observation erreur PLL(bleu)

phase en rad

200
echantillons

400

sortie du filtre de Kalman: estimation erreur FLL (rouge) et observation erreur FLL(bleu)
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200
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Figure 6: Carrier p hase and frequency tracking errors
(red) with respect tocarrier phase and frequency
measurements (blue) in statienode with
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Therefore these two FPLLiracking algorithmshowfair
performances in statimode to estimate jointlycarrier
phase and frequency tracking errors.

3.5 Comparison with the conventional

tracking

The Table 4 summarize tracking error standard
deviations and convergence times obtainedh the
conventional tracking algorithm and the two proposed

FPLL tracking model s in
Model Conv time Phase error
STD
Conventional - 0.01rad
KF FPLL Fixed Gain 0.15 sec 0.004 rad
KF FPLL Variable Gain 0.2 sec 0.004 rad

Table 4: PLL performances of conventional tracking
and proposed

This Table4 highlightsa better precisioin estimation of
FPLL tracking than conventionaltracking because it
shows lower variations focarrier phase tracking errors
around convergent value.

So, FPLL trackingreduces tracking errors compared to
conventional trackingNevertheless, it introduces a slight
convergence time.

Another advantage of FPLL tracking is its capabitiby
estimate jointly carrier phase and fregncy tracking
errors whereasonventionatrackingdoes it squentially

3.6 Receiver environment

points

adjustment

Herg are proposed key points on which it is possible to
play to adapt the FPLL tracking models to the applicati
environment

Concerning

and expressedccording to it.

For the
to consider the antenna environmemequires an
adaptationof noise matrix configuration odirectly an
automation ofKalman gain computatiomvithout noise
matrix settings.

To modify the measurement noise matrix R, a solution
can be toconstrain more the state variance model taking
into account the impact of thermal noise, phase
scintillationsand receiver oscillator noise][6

FPLLrécaickéngmoda

AKal man_basbech_ngFerLi_tvttlr%n

" " " » (Eq 19
Where:
1. the thermal noise impact,
T . phase scintillations variance,
1. receiveroscillatornoise impact.

The Figure 8 illustrates the relation between the carrier
phase error standard deviation and the PLL bandwidth
depending on what environment constraints are

st adghsiglereg€ C€i ver modeo.

T T T
—0sc. Vibration
—0Osc. Phase Error ||

Thermal Noise
— Dynamics
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Phase Error Std (*)

T
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Figure 8: Standard deviation of the phase error as

function of the loop bandwidth and with vibration,
phase error, thermal noise, dynamics and all the
effects. The main hypotheses taken arex TCXO
oscillator, C/NO = 30 dBHz, 1 ms integration time.

To automate thevariable Kalman gain and to avoid
adjusting noise matrix, it is possible to use ARMA
coefficients A patented lgorithm called

i Kal man/ ARbhhects Kalman gain and ARMA
coefficients computations bypassing the use of noise
matrix. This new algorithnis detailed irpart5.2

) A Ka I. man _b ase d_FPL3.Z fFiPl‘_Letﬁaclgrigialgérithi‘h@ é(ﬁﬁplexit?
command is used to update the filter. To take into account
the receiver environment, this command has to be updated

A complexity study is necessary to assess the portability
of the algorithms on any code hosting platform and the
use on vaFEiqus applications. This complexity analysis of

al'go?it ms weutt dncidbe the study of the mandatory
settings and an approximatioof the number of
calculation steps.

A Kalmanbased trackings more complex to implement
in terms of computation thamconventionabne

Now, fixed and variable Kalman gain computation
complexities are compared in case of a FPLL tracking
architecture.



On one hand a variable Kalman gain requiresots of
necessary settings to adjust noisatrix as for a known
third order Kalmarbased tracking

On the other hand, for a constdtdlman gain setthgs
are less numerous. Howevén, set a third order Kalman
gainneedscomplex calculationdMoreover, hecommand
used to update the filtenust be configured in accordance
with the receiver environment and so, the applications.

‘ KF FPLL fixed KF FPLL
gain variable gain
Main Command to updaty Noise matrix to
configurations thefilter compute the
filter gain
Constant gain
Demanding computation + Known
calculations Knovv_n Kalman Kalm_an
equations with a equations
command

Table 5: Short complexity comparison between fixed
and variable gain incase of a FPLL tracking
algorithm

Therefore,according to thelable5, in a FPLL tracking
architecture, it is easier to use a variable Kalman gain
once noise matrix configuration is foutidan a constant
one.

This short complexity analyse is a start to conclifidee
proposed FPLL tracking algorithms are flexible and can
be embedded to any hardware platform in order to be used
for various GNSS applications.

4 RESISTANCE TO FEARED
EVENTS OF PROPOSED FPLL
TRACKING MODELS

With a growing GNSS market and the emergeoiceew
specific GNSS need, new environment constraints appear
and receivers robustness have to be improved to ensure
signal processing in harsh environments. In this part,
proposed FPL algorithms robustness to some feared
events will be analysed.

4.1 Fearedeventsclassification

At space segment, ground segment and user segment
levels, various feared events may impact the final services
performancesThefeared events may be classifiedfive
categories®s shown in th&able6.

S ! Some feared events
level
1 Loss of signal due to a satelli
problem
1 Codecarrier incoherency satellit
inducedby codecarrier divergencge
1 Jump ininter-frequency hardware bias
: Doppler frequency instabili
Satellite PP q y by
and IODE (Issue Of Data Ephemeris)
receiver anomaly
15753 1 Erroneous ephemeris
1 Noisy ephemeris
9 Corrupted navigation message
1 Signal distortion
9 Drift in inter-frequency hardware bias
1 SIS step error (incl. clock jump)
1 SIS ramp error (incl. clock drift)
Signalin ¢ s|S acceleration errpr
space
(SiS)level T SIS sinusoid error
1 SIS noise error (incl. excessive phe
noise on carrier)
Excessive ionospheric spatial gradjer
1 Excessive ionospheric temporal
Regional gradient
level S . T
Excessive ionospheric scintillation,
Excessive troposphere
1 Excessive electromagnetic interferen
(including intentional sources of
Local interference such as a scrambler),
level 1 Excessive multipath,
1 Nonrtline of sight conditions
1 Damaged antenna
Receiver
hardware T Damaged cable
level f  Lack of power supply

Table 6: Classification of some feared events
according to segment levels

SIS errors are a major error source for the GNSS. They
are defined as any errors related to satellite transmission,
position and clock errors. The SIS errors are a metric to
determine satellites failures.

Excessive ionospheric gradients are considereoh &sror
source for position compation and integrity monitoring.

Hardware feared events lead to a loss of signal but not
due to a satellite problem and has to be differentiated

10



Grade

from the feared events at a satellite level which also lead
to a loss of sigal.

All the feared events will not be addressed in this paper.
Nevertheless, the focus will be made on weak signals,
high dynamics, multipatheffects interferences and
ionospheric scintillations.

4.2 Feared events/applications mapping

The diversification of GNSS applications means the
emergence of new environment constraintsdeed,
feared eventsire really depndenton the environment of
the receiver antenna.

The purpose of this part is to make a repatrtition of feared
events according to their probabiligf occurrence for
each application.

The five feared events considered are these for which a
robustnessstudy will be presented later in this paper:
weak signals, dynamics, multipath effects, interferences
and scintillations.And, the GNSS fields of apphtion
compared are: road, rail, maritime, agriculture, aviation,
space LEGsatellitesand space GE®atellites

A scale of feared events is proposwtTable 7 to build

the mapping betweethesesfeared events and GNSS
markets. The grade extends from 1 to 5 meaning the
feared event has a low probability to be encountered to
high probability.

Signal

strength Scintillations

Multipath

Dynamics

1 -130dBm , > M2 5kHz 0.2 S4 index
(countryside)
2  135dBm  0M90 15kHz 0.4 S4 index
(house)
3 -140dBm OM™180° ooy 0.6 S4index
(village)
4 -145dBm 20(2?5)60 35kHz 0.8 S4 index
200 m/360°
5 -150 dBm (canyon 45 kHz 1 S4 index
buildings)
Table 7: Proposed scale of feared events for the
mapping

In the Table 7, the criterionésignal strengtBcorresponds

to the minimal detected power of signal and allows to
judge of the signal
based on heighdf reflective sufacesand on howmuch

(in degrees)the receiver is surrounded by reflective
surfaces T h e
value for a GPS L1 C/AThe Appendix 2 presents

Doppler shift values computed in three GNSS
applicatons.The Oscsdticlli atir omon
compare ionospheric  scintillationsprobability  of

occurrence for each considered GNSS application.
metric is used to graduate the power of interferences

riter®raik ne s s .

i sThug thg dirgtme d g Igs 0

because this feared event really depends on the receiver
environment andc a n 0t be
appreciation of the occupied area has been taken into
account to distinguish interferences impact according to
the GNSS field of application.

Based on this graduationhd Figure 9 illustrates the

mappng between studiedeared events andhosen
applications families.

weak signal

dynamics scintillations
interferences multipath
Rail/Road s \aritime/Agriculture = pyvigtion

=—Space LEO =— Space GEO
Figure 9: Mapping between feared events and GNSS
markets

Rail and road plications can beiewed as a same use
casebecause almost same feared events are encountered.
Indeal, these GNSS markets are particulaffected by
scintillations andmultipath effects due to buildings and
vegetation.

As the main very restrictive feam events are
scintillations and environments are similar (oceans and
wide plains) maritime and agriculture fields can also be
gathered.

Scintillations and interferences that can be continuous or
pulsed are the most disturbing feared events in aviation.
High dynamics is a real constraint for spaeeeivers in
LEO satellite receivers. Indeed, for a GPS L1 C/A
receiver, Doppler shift can reach values of 44.55 kHz
(Appendix3).

Spacereceivers embedded (BEO satellitesmainly suffer
from weak signals witlsignal strength of151dBm for a
GPS L1 C/A Appendix 3.

In the following parts, robustness of proposed FPLL
tracking algorithms to these five feared events spread in
GNSS applications will be tested.

4.3 Low carrier to noise ratios

The 6multipathé c
Multipath, interferences and high dynamics induces

respectively signal fading, signal jamming and antenna

6dynamiis thé Doppteii shift r i o mpattern sweeping that generate variations of carrier to

noise ratios. As previously shown, added to this, there are
weak signals particularly in spacBEO applications.

6 p eestf dealsmwith c e
evaluating robustness to several values of C/NO.

11
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Conventional tracking gives divergent carrier phase
tracking errors for low C/NO while FPLL tracking
algorithms  provides a correct car phase

synchronization. Figure 10 illustrates this distinction of
performance on estimation oérrierphase tracking errors
in case of C/NO=21 dBH

5

o 05 1 15 2 25

Time in second

Figure 10: Carrier p hase tracking errors (rad) with
conventionalmodel (blue),
&alman_based_ FPLL_fixed_gaird(green) and
&alman_based_FPLL_variable gaid(red) in case of
C/N0=21dBHz

Therefore, proposed FPLL tracking alghms (with
variable and fixed Kalman gain) are more robust to low
carrier to noise ratios than a conventional tracking.

4.4 Receiver dynamis

The recei verdrsespody nt@ nall cthe
movements of t h ewithr regard foxthe r 6 s
satellites radial movementlt implies frequency change

and, then hasn impact on the calculation of the signal
to-noise ratio at the correlator outpdtie to a moving
correlator peak.

The worst case concerns space applicatitmdeed, as
provided in Appendix 3, LEO satellites embedded
receivers have large Doppler shifts and Doppler shift rates
which imply:

1 A very good acquisition capability with
optimized frequency cells search,

1 A very good capability to track the signals, in
partiaular with antennas attitudes evolutions,

1 A capability to minimize the acquisition to
tracking transition step,

1 A capability to reacquire (warm start) quickly
the signals after tracking loss.

On theFigure 11 are plotted carrier phase tracking errors
in case ofthe worst values of Doppler shifd4,55 kHz)
and Doppler shift rat€13,53 Hz/s)for a LEO satellite
receiver (GPS L1 C/A)

60000

50000 |-

40000

30000

20000

10000 [

o
0 2 4 6 8 10 12 14
Time in second

Phase tracking errorsin

Time in second

Figure 11: Carrier p hase tracking errors (rad) with
conventional tracking (blue),
6Klaman_based_FPLL_f)ended_gai

6Kal maamsed_ FPLL variable gai
Doppler shift=44,55kHz and Doppler shift rate=13,53

Hz/s (C/NO=50dBHz)
FPLL tracking achitecture allows a correct

synchronization in carrier phase with errors not varying
much whereas conventional tracking provides divergent
errors.

Thus, both proposeBPLL trackingalgorithms aregobust

to high dynamics.

4.5 lonospheric scintillations

lonospleric scintillatiors are induced by ionosperic
irregularities and affect GNSS signals in two ways:
dispersion and diffraction. The first one affects the group
delay and phase advance of the sigriald, the second
ore Bdatferd GRSS signal and causes faiinos in the
signal amplitude and phase

The received signal affected by scintillations may be
modelled as follows

1 O
616 WOQOAT O  (Eq1H
— ] €0

Where:

1 As the signabhmplitude,

116 is the scintillation magnitude

f ®0 isthe PRN code (L1 C/A BPSK here),

1 Qo is the navigation message,

1 fo is the nominal carrier frequency (intermediate
frequency after dowwaonversion),

T 71 is the scintillatiorcarrierphase

1 —is the carrier phasdelay.

In the equationl5, the code delay is not taken into
account.One can derive that scintillations will affect the
c or r e buputsoas web as discriminators.

12



Scintillations were simulated, and the corresponding
tracking performances were assess€@jure 12 and
Figure 13 presentthe phase andhe amplitudeof the
generatedcintillation

Scintillation phase in radian

5
T

0 5 10 15 20 25 30
Time in second

Figure 12: Generated scintillation phase

200

Scintillation amplitude in dB

60

-an

[ 5 10 15 20 5 30
Time in second

Figure 13: Generated scintillation amplitude

The Figure 14 provides carrier phase errors of proposed

FPLL tracking algorithms and conventional tracking
model in presence of scintillatieni n
modeo.

55

651

phase tracking errors in radian

02 T T T T T
01 H
0 p o
01

02

phase tracking errors in radian

03

04
0
time in second
Figure 14: Carrier phase tracking errors (rad) with
conventional model (blug,

6Kal man_based_ FPLL _ fi
6Kal man_based_FPLL
scintillations (Astatic receiver mod.)

xed

istatic

inagasé oh b | e _tfafgle PeQults(forfi

On the Figure 14, the above curve shows that
conventional tracking model provides convergent carrier
tracking errors but aroune.3 radians. On the contrary,
proposed FPLL tracking models allows to have
convergent carrier phase errors around 0. Thus, proposed
FPLL tracking is more robust to scintillations than
conventional one.

Moreover, a fixed Kalman gain in case of FPLL tracking
seems a little bit more ralst than a variable one that
provides errors shifted of 0.05 rad.

4.6 Multipath

Multipath repli@as are faded and delayed Nome.iOf
Sight RHCP signals (with at least two reflections to be
polarized at the antenna level).

The following equations correspond the correlator
outputsin which a term represents multipath impact

@
o} . L
E'Q(‘)i"Qé“(b'Y- AlO ¢ o
8 . (Eq 19
| ol aEdY -
yt AT O Y—
00
0, . .=~ fea .
El QewY - OE- € 0
R . (Eq 19
i QEd Y -
C
vt AT O Y—

receiver
Where

A is the input signal amplitude,

d(t) is the modulation of the navigation message,
'Y is the code autocorrelation,

- is the signal Doppler frequency error,

- is the signal code delay error,

- is the signal carrier phase error,

¢ 0 and¢ O are the additive and uarelated
white Gaussian noises,

Yt is the K' NLOS signal replica code delay,

Y— is the K" NLOS signal replica phase delay,

| is the K'NLOS signal replica amplitude fading.

= a4 _—a_-a_9a_2

= —a —a

Multipath effects imply the presence of secondary peaks

and depe d on the Waveform and the correlation
-9 %Har%c?erls |c§ Fér th C/ﬁ\ Ql aI a single correlation
correlation of PRN codes with a
BPSK modulation, whereas in presence of subcarriers
with BOC modulations, there are secondary peaks.
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The multipath impact depends on the processed signals

and the discriminators characteristics taput in the
tacking algorithm.

The Table 8 contains carrier phase error standard
deviations of proposed FPLL tracking algorithms and
conventional traking model in order to compare their
robustness.

Model Phase error
STD
Conventional 0.33rad
KF FPLL Fixed Gain 0.09rad
KF FPLL Variable Gain 0.1rad

Table 8: Comparison of carrier phase error standard

deviationsbetwee conventionaltracking and the two

proposed FPLL tracking modelsin presence oflinear

multipath with 0.5 fading coefficient and 1¢ seconds
delay

All three models are robust to multipath effects with low
carrier phase error standard deviations. Howekét, L
tracking algorithms are more robust than conventional
tracking. There is no really difference between fixed and
variabl e Kal man gain in
robustness to multipath.

4.7 Carrier Waves Interferences

There are three main types of irfegence which are
Carrier Waves (CW) interference, Wide Band (WB)
interference and puldanterference.

In this paper, only CW interference wiinewave form
is considered [14

5 wo 0 Al ® Q Yoo — (Eq18)

Where:

0 s the interference strength (in dBW),

—is the interference phase ( in rad),

Y'Qis the frequency shift of the interference against

the considered GNSS signal carrier frequency (in

Hz),

1 "Qis the intermediate frequency of the considered
GNSS signa(in Hz),

 "Q ¥Qis the central frequency (in Hz).

=a =4 =9

These interferences have an impact on the calculation of
the signalto-noise ratio at the correlator output as the
interferences cause sinusoids on top tbé correlator
peak. The amplitude of the ssuids is as important as
the strength of interference is high.

To testrobustness ofPLL trackingto interferencesa
carrier wave®ne isgenerated witta power 0f165 dBW.
This performance test is made in the worst condition that

FPLL,

is to say without relive Doppler between the
interference and the useful signal meaning the
interference stays on a spectrum line. And, the chosen
spectrum lie is a worst one which icharacterized by
frequency of227 kHz (it corresponds to a thestical
spectrum line of RN 6)[13] (Appendix 4.

The Figure 15 represents carrier phase tracking errors for
conventional tracking and for both proposed FPLL
tracking models. There is a short time of convergence for
the three algorithms but lower errovsith FPLL than
conventional tracking before convergence. Then, carrier
phase errors vary more with the conventlotracking
than witha FPLL one.
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Figure 15: Carrier p hase tracking errors (rad) with
conventional model (blug,
6Kal man_based_ FPLL fixed_g
6Kal man_based_ FPLL _ vwaaseochbl e _
a-165 dBW CW interference on the worst PRN6
spectrum line (C/NO=50dBHz)

The histogram of carrier phase tracking errors after
convergence, ofrigure 16, confirms the fact that FPLL
tracking provides lower standard deviations than
conventional tracking.

500 r

400 - 4

00 +
o]
-0.04 -0.02 0.02 0.04
Phase tracking errors (rad)

Figure 16: Histogram of carrier phase tracking errors
standard deviationsafter convergencewith
conventional model (blug,
60Kal man_based_FPLL _fixed_g:
6Kal man_based_ FPLL _ vvwaaseochbl e _
a-165 dBW CW interference on the worst PRN6
spectrum line (C/NO=50dBHz)
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Thereforeproposed FPLL tracking architectures are more
robust to carrier waves interferences in worst case than a
conventional on. Moreover, according to the histogram, a
variable Kalman gain (with a setting of noise matrix) is
more robust to interferences thanidedl Kalman gain in
case of a FPLL tracking.

4.8 Conclusionon proposed FPLL tracking
model sé6 robustness

According to this study, &PLL tracking algorithmhas
better performances and is more robust to feared events
than aconventionatracking modelparticubrly in case of
high dynamics. Moreover using a FPLL tracking
architectureenables taestimate jointlycarrier phag and
frequency tracking errorsHence, it allows to jointly
update the frequency synthesizer and the carrier NCO.

The choice of a variablgalman gain seems to be wiser
than a fixedone in case of a FRLtracking affected by
interferences. Except for thienvironment constraint,
differentiation between fixed or variable Kalman gain in a
FPLL tracking architecture cant be really done on the
robustness to feared event# is th e
complexity and so, the flexibility to the application
environment thatmake a choice possible betwetrese
two models.

Thus, poposed FPLL tracking algorithms are robust in
harsh environmentét is a key point to answer to neand
various GNSS needs linked with new environment
constraintgpart4.2).

But, they require some improvements to take into account
the reeiver environment and to detect feared events.

5 INTEGRATION TO RECEI VER
ARCHITECTURE AND
DISCUSSION ABOUT
DETECTION CAPABILITY

This partdeals with the integration of the two proposed
FPLL tracking algorithms in the receiver architecture to
keep their robstness and bring detection of feared events.
Thus, some various possible signal processing
architectures will be proposed and discussed.

5.1 Inter-channel tracking architecture

The first proposed tracking architecture is the inter
channel tracking. Itisaiknd o f A v efdPLLr i
tracking but at tracking level. The idea is textend
proposed FPLL tracking algorithms by usiagKalman
filter to estimate simultaneously carrier phase and

sat.

frequency tracking errors of all tracking channels. That
means itis a Kalman filter whose state vector is
composed of carrier phase and frequency errors from all
tracking channels.

This architecture is represented on the

Figurel7. This architecture doedill not modify the DLL
tracking loop operation which occuseparatelywith a
conventionaloop filter

|
Carrier Carrier
Correlators il i
integrator discriminator

e Q Tracking
Frequency Frequency Kalman Filter
integrator discriminator
Code generator Code NCO

1.N

Figure 17: Inter -channel tracking architecture

al gorithmso

The interest of this architecture is to benefit frekisting
inter-channelcorrelation at synchronization levin order

to be robust from thistepof signal processing. Another
advantage of intechannel correlatiois to detect tracking
anomalies and fared eventslike interferences by
comparison between channils meas ur ement s

To improve this intechannel tracking architecture and to
take into account the receiver environment, it can be
useful to add a state machine as represented on the
Figurel8.

Indeed, this state machine uses environment registers that
analyse and savenvironment data. lallows to optimize
signal processing by selection of useful channels for
synchronization process and a selection of noise settings
in case of a variable Kalman gain. This last selection
capability improves the measurement and dynamics noise
matrix configurations.

State machine

| "

Correlators Carrier Carrier
integrator [l discriminator
Q Frequency @ Frequency
= integrator discriminator

Tracking
| Kalman Filter

DLL

Code generator Code NCO
CarrierNCD NER

ono

Figure 18: Inter -channel tracking architecture with a
state machine
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Thanks to cross correlation and this state machine,
strengthen robustness and ensures detection of feared
events and selection capabilities

Nevertheless, problem on one channeh cgenerate
dysfunction of all tracking process.

5.2 Kalman/ARMA -based algorithm

The patented Kalman/ARMA algorithfd5] can be used

to improve proposed FPLL tracking algorithms in two
ways: settings of variable Kalman gain and interference
detection.

The ARMA (Auto-Regressive Moving Yerage)model is

a particularly simple parametric model for signals
considered here as "discrete time" processes; purely non
deterministic. ARMA modeling assumes that the signal is
generated by a linear difference equationthva finite
order, which only shows some past values of the signal
multiplied by coefficients (AR part) to which is added a
random term (MA part) .

An ARMA process is therefore an IIR (Infieitimpulse
Response) filter whiclinput is azeromean white naie
The coefficients of the ARMA process are separated into

two groups: AR{ai il 4, p]} and MA{bI il 4 q]}

The discrete time equation of the ARMA model is
expressed as follows:

p q
Yeta &Y = ta b

i=1 i=1

"ki N

(Eq19

Where:
1 pisthe AR part order of the ARMA modlel

1 qisthe MA part order of the ARMA model

1 /7 is a discrée white noise (as input) with zero
mean with varianceS ,72

1 vy is an output time sampled signal from the
considered ARMA process

In this patented algorithnthe coefficients of an ARMA
model are identified in an optimal way by approximating
the ARMA model by dong AR model, that is to say with
higher order than the orders of tleassical ARMA
model. This method does not solve the first p equations of
Modified Yule Walker MYW) but an infinite number of
equations. ldnce its accuracyis increasedlt is the AR

part which contains the usefiriformation concerning the
signal to be extractedhe MA part contains the noise
characteristics.

Then, thanks to the ARMAGs
the state transition matri%.and more particularlythe
Kalman filter gain an beconfigured

In case ofa second order Kalmdmased tracking
architecture, e relationship between the ARMA model
and the filter is ppvided by the following equations

&
%o o ﬁ (Eq20)
o w ()
P =
. 1] W P
0 o (Eq21)
l(lb Wwp
u o U

Where:
1 %ds the state transitiomatrix,
1 0 is theKalman filtergain,
1 & and® are AR part coefficients
f & and® are AR part coefficients

More details about this algorithm are available in the
Appendix 5

This patented Kalman/ARMA algorithm is an idea to
automate Kalman filter gain computatidaypassing the
demanding noise matrix configuratiomdoreover, using
ARMA coefficients allows to take into account the
receiver environmerdand so, the variable Kalman gain is
set up according to.iThatis why it can be very useful to
use it instead o& classic variable Kalman filter in a FPLL
tracking architecturelt enables to have an adaptive gain
to feared events.

On the other parthis algorithm can be used for detection
of carrier waves interferences. Indeed, filtered tracking
errors are anaed in case of sinusoidal signals and so,
carrier wave interference can be detected by consideration
of the innovation term.

Nevertheless, the presented relationship between the
ARMA model and the Kalman filter characteristics deals
with a Kalmanbasedsecond order tracking. Thus, ing

the Kalman/ARMA patent for a FPLL trackinghodel
requires some adjusents.

5.3 FAPI (Fast Approximation Power

Iterated) algorithm

The patented FAPI algorithfd6] can be usgto improve

proposed FPLL tracking algorithms in two ways:
reduction of time of convergencend interference
detection.

It is not a Kalmarbased algorithm but a modeased on
subspaces decompositioand power iterated method
FAPI algorithm provides betteresults than a Kalman
filter. Moreover, it requires less demanding settingse
comparison is presezd in theAppendix 6 Thus, itis an
idea to replace thefrequency and phasdracking
akchitectufe ipreserged i thispapemp ut at i on,
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The FAPI algorithnprovides several advantages. First, it
is stable and fasSecondly, it guarantees the signal space
base orthonormality at each iteration. It also avoids matrix
inversion and square matridoreover, recursive least

Contrary to Kalman/ARMA algorithm, the FAPI
algorithm may not be used to set the FPLL tracking but to
decrease the loops time of convergence @ninprove
robustnessagainst high dynamics since it seems robust

square methodis usedin order to tracks i nu s o i d sagainst brtal variations in frequencieMoreover, further

amplitude and phase.

Thanks to all these benefits, this algorithm has better
performances than several tracking algorithms based on
subspaceslecompositiorand power terated method like
Projection Approximation Subspace TrackifBAST),
Orthogpnal Projection Approximation Subspace tracking
(PAST) and Novd Information Criterion (NIC) The
FAPI model is also faster than these other algorithms. The
comparison between these algorithms is presented in the
Appendix7.

To prove the interest of theAPI algorithm in a FPLL
tracking architecture, some preliminaries resudiee
exposechereafter

Figure19 andFigure20 represent how a FAPI model can
track theoretical frequency and carndrase variationsf
a downconverted signal.

Freguency in Hertz

08 1 15 Tlmezm second 25 3 35 4

=1

Figure 19: Frequency (Hz) with theoretical frequency
variations (red) and FAPI estimations (blue) in case of
a sudden frequency change
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Figure 20: Carrier phase (Hz) with theoretical carrier
phase variations (red) and FAPI estimations (blue) in
case of a sudden carrier phasehange

The fast convergence capability of FAPI algorithm (0.5
seconds) is confirmed in a worst case that is when
frequency and carrier phasea r y s u d=d.ldzrahdy
pli=0.4 rad).

The FAPI model is performant to track a useful signal and
so, if it tracksinterferencs, it is a mean to do interference
detection.

Therefore, the FAPI algorithm is a solution to improve
proposed FPLL tracking architectures. However, some
important modifications will be necessary because the
FAPI algorithm tracks useful signalsand not
discriminators outputs.

investigations are expected to demonstrate that FAPI may
contribute to make more robuatquisition to tracking
transition In addition, th Kalman/ARMA and FAPI

algorithms are candidates to provide interfeence
detection.
5.4 An improved  vector  tracking

architecture

The architectureliscussed hereaftes an improved vector
tracking considering here tracking and navigation levels
as it is explained in pag.4.

This architecture is illustrated in tiégure21.

( oof

Figure 21: Improved vector tracking architecture with
the FPLL architecture
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